MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg3 Structured version   Unicode version

Theorem issubrg3 16915
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m  |-  M  =  (mulGrp `  R )
Assertion
Ref Expression
issubrg3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )

Proof of Theorem issubrg3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2443 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
3 eqid 2443 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3issubrg2 16907 . . 3  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
5 3anass 969 . . 3  |-  ( ( S  e.  (SubGrp `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) )
64, 5syl6bb 261 . 2  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
7 issubrg3.m . . . . 5  |-  M  =  (mulGrp `  R )
87rngmgp 16673 . . . 4  |-  ( R  e.  Ring  ->  M  e. 
Mnd )
91subgss 15703 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  S  C_  ( Base `  R ) )
107, 1mgpbas 16619 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  M )
117, 2rngidval 16627 . . . . . . 7  |-  ( 1r
`  R )  =  ( 0g `  M
)
127, 3mgpplusg 16617 . . . . . . 7  |-  ( .r
`  R )  =  ( +g  `  M
)
1310, 11, 12issubm 15496 . . . . . 6  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
14 3anass 969 . . . . . 6  |-  ( ( S  C_  ( Base `  R )  /\  ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S )  <->  ( S  C_  ( Base `  R
)  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
1513, 14syl6bb 261 . . . . 5  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
1615baibd 900 . . . 4  |-  ( ( M  e.  Mnd  /\  S  C_  ( Base `  R
) )  ->  ( S  e.  (SubMnd `  M
)  <->  ( ( 1r
`  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( .r `  R
) y )  e.  S ) ) )
178, 9, 16syl2an 477 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  (SubGrp `  R )
)  ->  ( S  e.  (SubMnd `  M )  <->  ( ( 1r `  R
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( .r `  R ) y )  e.  S ) ) )
1817pm5.32da 641 . 2  |-  ( R  e.  Ring  ->  ( ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M )
)  <->  ( S  e.  (SubGrp `  R )  /\  ( ( 1r `  R )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( .r
`  R ) y )  e.  S ) ) ) )
196, 18bitr4d 256 1  |-  ( R  e.  Ring  ->  ( S  e.  (SubRing `  R
)  <->  ( S  e.  (SubGrp `  R )  /\  S  e.  (SubMnd `  M ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736    C_ wss 3349   ` cfv 5439  (class class class)co 6112   Basecbs 14195   .rcmulr 14260   Mndcmnd 15430  SubMndcsubmnd 15484  SubGrpcsubg 15696  mulGrpcmgp 16613   1rcur 16625   Ringcrg 16667  SubRingcsubrg 16883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-3 10402  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-0g 14401  df-mnd 15436  df-submnd 15486  df-subg 15699  df-mgp 16614  df-ur 16626  df-rng 16669  df-subrg 16885
This theorem is referenced by:  rhmeql  16917  rhmima  16918  cntzsubr  16919  subrgacs  29583
  Copyright terms: Public domain W3C validator