MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg Structured version   Unicode version

Theorem issubrg 17943
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
issubrg.b  |-  B  =  ( Base `  R
)
issubrg.i  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issubrg  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )

Proof of Theorem issubrg
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 17941 . . . 4  |- SubRing  =  ( r  e.  Ring  |->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) } )
21dmmptss 5351 . . 3  |-  dom SubRing  C_  Ring
3 elfvdm 5907 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  dom SubRing )
42, 3sseldi 3468 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
5 simpll 758 . 2  |-  ( ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) )  ->  R  e.  Ring )
6 fveq2 5881 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
7 issubrg.b . . . . . . . 8  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2488 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
98pweqd 3990 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P B )
10 oveq1 6312 . . . . . . . 8  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
1110eleq1d 2498 . . . . . . 7  |-  ( r  =  R  ->  (
( rs  s )  e. 
Ring 
<->  ( Rs  s )  e. 
Ring ) )
12 fveq2 5881 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
13 issubrg.i . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
1412, 13syl6eqr 2488 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
1514eleq1d 2498 . . . . . . 7  |-  ( r  =  R  ->  (
( 1r `  r
)  e.  s  <->  .1.  e.  s ) )
1611, 15anbi12d 715 . . . . . 6  |-  ( r  =  R  ->  (
( ( rs  s )  e.  Ring  /\  ( 1r `  r )  e.  s )  <->  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) ) )
179, 16rabeqbidv 3082 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) }  =  {
s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
18 fvex 5891 . . . . . . . 8  |-  ( Base `  R )  e.  _V
197, 18eqeltri 2513 . . . . . . 7  |-  B  e. 
_V
2019pwex 4608 . . . . . 6  |-  ~P B  e.  _V
2120rabex 4576 . . . . 5  |-  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V
2217, 1, 21fvmpt 5964 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  =  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
2322eleq2d 2499 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  A  e.  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } ) )
24 oveq2 6313 . . . . . . . 8  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2524eleq1d 2498 . . . . . . 7  |-  ( s  =  A  ->  (
( Rs  s )  e. 
Ring 
<->  ( Rs  A )  e.  Ring ) )
26 eleq2 2502 . . . . . . 7  |-  ( s  =  A  ->  (  .1.  e.  s  <->  .1.  e.  A ) )
2725, 26anbi12d 715 . . . . . 6  |-  ( s  =  A  ->  (
( ( Rs  s )  e.  Ring  /\  .1.  e.  s )  <->  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2827elrab 3235 . . . . 5  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2919elpw2 4589 . . . . . 6  |-  ( A  e.  ~P B  <->  A  C_  B
)
3029anbi1i 699 . . . . 5  |-  ( ( A  e.  ~P B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
31 an12 804 . . . . 5  |-  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
3228, 30, 313bitri 274 . . . 4  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
33 ibar 506 . . . . 5  |-  ( R  e.  Ring  ->  ( ( Rs  A )  e.  Ring  <->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) ) )
3433anbi1d 709 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3532, 34syl5bb 260 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3623, 35bitrd 256 . 2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
374, 5, 36pm5.21nii 354 1  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786   _Vcvv 3087    C_ wss 3442   ~Pcpw 3985   dom cdm 4854   ` cfv 5601  (class class class)co 6305   Basecbs 15084   ↾s cress 15085   1rcur 17670   Ringcrg 17715  SubRingcsubrg 17939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fv 5609  df-ov 6308  df-subrg 17941
This theorem is referenced by:  subrgss  17944  subrgid  17945  subrgring  17946  subrgrcl  17948  subrg1cl  17951  issubrg2  17963  subsubrg  17969  subrgpropd  17977  issubassa  18483  subrgpsr  18578  cphsubrglem  22048
  Copyright terms: Public domain W3C validator