MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubrg Structured version   Unicode version

Theorem issubrg 17556
Description: The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
issubrg.b  |-  B  =  ( Base `  R
)
issubrg.i  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
issubrg  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )

Proof of Theorem issubrg
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subrg 17554 . . . 4  |- SubRing  =  ( r  e.  Ring  |->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) } )
21dmmptss 5509 . . 3  |-  dom SubRing  C_  Ring
3 elfvdm 5898 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  dom SubRing )
42, 3sseldi 3497 . 2  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
5 simpll 753 . 2  |-  ( ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) )  ->  R  e.  Ring )
6 fveq2 5872 . . . . . . . 8  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
7 issubrg.b . . . . . . . 8  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2516 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  B )
98pweqd 4020 . . . . . 6  |-  ( r  =  R  ->  ~P ( Base `  r )  =  ~P B )
10 oveq1 6303 . . . . . . . 8  |-  ( r  =  R  ->  (
rs  s )  =  ( Rs  s ) )
1110eleq1d 2526 . . . . . . 7  |-  ( r  =  R  ->  (
( rs  s )  e. 
Ring 
<->  ( Rs  s )  e. 
Ring ) )
12 fveq2 5872 . . . . . . . . 9  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
13 issubrg.i . . . . . . . . 9  |-  .1.  =  ( 1r `  R )
1412, 13syl6eqr 2516 . . . . . . . 8  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
1514eleq1d 2526 . . . . . . 7  |-  ( r  =  R  ->  (
( 1r `  r
)  e.  s  <->  .1.  e.  s ) )
1611, 15anbi12d 710 . . . . . 6  |-  ( r  =  R  ->  (
( ( rs  s )  e.  Ring  /\  ( 1r `  r )  e.  s )  <->  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) ) )
179, 16rabeqbidv 3104 . . . . 5  |-  ( r  =  R  ->  { s  e.  ~P ( Base `  r )  |  ( ( rs  s )  e. 
Ring  /\  ( 1r `  r )  e.  s ) }  =  {
s  e.  ~P B  |  ( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
18 fvex 5882 . . . . . . . 8  |-  ( Base `  R )  e.  _V
197, 18eqeltri 2541 . . . . . . 7  |-  B  e. 
_V
2019pwex 4639 . . . . . 6  |-  ~P B  e.  _V
2120rabex 4607 . . . . 5  |-  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) }  e.  _V
2217, 1, 21fvmpt 5956 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  =  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } )
2322eleq2d 2527 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  A  e.  { s  e.  ~P B  | 
( ( Rs  s )  e.  Ring  /\  .1.  e.  s ) } ) )
24 oveq2 6304 . . . . . . . 8  |-  ( s  =  A  ->  ( Rs  s )  =  ( Rs  A ) )
2524eleq1d 2526 . . . . . . 7  |-  ( s  =  A  ->  (
( Rs  s )  e. 
Ring 
<->  ( Rs  A )  e.  Ring ) )
26 eleq2 2530 . . . . . . 7  |-  ( s  =  A  ->  (  .1.  e.  s  <->  .1.  e.  A ) )
2725, 26anbi12d 710 . . . . . 6  |-  ( s  =  A  ->  (
( ( Rs  s )  e.  Ring  /\  .1.  e.  s )  <->  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2827elrab 3257 . . . . 5  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( A  e.  ~P B  /\  (
( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
2919elpw2 4620 . . . . . 6  |-  ( A  e.  ~P B  <->  A  C_  B
)
3029anbi1i 695 . . . . 5  |-  ( ( A  e.  ~P B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) ) )
31 an12 797 . . . . 5  |-  ( ( A  C_  B  /\  ( ( Rs  A )  e.  Ring  /\  .1.  e.  A ) )  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
3228, 30, 313bitri 271 . . . 4  |-  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) ) )
33 ibar 504 . . . . 5  |-  ( R  e.  Ring  ->  ( ( Rs  A )  e.  Ring  <->  ( R  e.  Ring  /\  ( Rs  A )  e.  Ring ) ) )
3433anbi1d 704 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( Rs  A )  e.  Ring  /\  ( A  C_  B  /\  .1.  e.  A ) )  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3532, 34syl5bb 257 . . 3  |-  ( R  e.  Ring  ->  ( A  e.  { s  e. 
~P B  |  ( ( Rs  s )  e. 
Ring  /\  .1.  e.  s ) }  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
3623, 35bitrd 253 . 2  |-  ( R  e.  Ring  ->  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) ) )
374, 5, 36pm5.21nii 353 1  |-  ( A  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  A )  e.  Ring )  /\  ( A  C_  B  /\  .1.  e.  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {crab 2811   _Vcvv 3109    C_ wss 3471   ~Pcpw 4015   dom cdm 5008   ` cfv 5594  (class class class)co 6296   Basecbs 14644   ↾s cress 14645   1rcur 17280   Ringcrg 17325  SubRingcsubrg 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-subrg 17554
This theorem is referenced by:  subrgss  17557  subrgid  17558  subrgring  17559  subrgrcl  17561  subrg1cl  17564  issubrg2  17576  subsubrg  17582  subrgpropd  17590  issubassa  18100  subrgpsr  18201  cphsubrglem  21750
  Copyright terms: Public domain W3C validator