MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Unicode version

Theorem issubmnd 15770
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b  |-  B  =  ( Base `  G
)
issubmnd.p  |-  .+  =  ( +g  `  G )
issubmnd.z  |-  .0.  =  ( 0g `  G )
issubmnd.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
issubmnd  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Distinct variable groups:    x, y, B    x, G, y    x, H, y    x,  .+ , y    x, S, y    x,  .0. , y

Proof of Theorem issubmnd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  H  e.  Mnd )
2 simprl 755 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
3 simpll2 1036 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  C_  B )
4 issubmnd.h . . . . . . . 8  |-  H  =  ( Gs  S )
5 issubmnd.b . . . . . . . 8  |-  B  =  ( Base `  G
)
64, 5ressbas2 14549 . . . . . . 7  |-  ( S 
C_  B  ->  S  =  ( Base `  H
) )
73, 6syl 16 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  =  ( Base `  H ) )
82, 7eleqtrd 2557 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  ( Base `  H ) )
9 simprr 756 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
109, 7eleqtrd 2557 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  ( Base `  H ) )
11 eqid 2467 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
12 eqid 2467 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
1311, 12mndcl 15740 . . . . 5  |-  ( ( H  e.  Mnd  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H
) )  ->  (
x ( +g  `  H
) y )  e.  ( Base `  H
) )
141, 8, 10, 13syl3anc 1228 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( +g  `  H ) y )  e.  ( Base `  H
) )
15 fvex 5876 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
165, 15eqeltri 2551 . . . . . . . . 9  |-  B  e. 
_V
1716ssex 4591 . . . . . . . 8  |-  ( S 
C_  B  ->  S  e.  _V )
18173ad2ant2 1018 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  S  e.  _V )
19 issubmnd.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
204, 19ressplusg 14600 . . . . . . 7  |-  ( S  e.  _V  ->  .+  =  ( +g  `  H ) )
2118, 20syl 16 . . . . . 6  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  .+  =  ( +g  `  H ) )
2221ad2antrr 725 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  .+  =  ( +g  `  H ) )
2322oveqd 6302 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
2414, 23, 73eltr4d 2570 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2524ralrimivva 2885 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S )
26 simpl2 1000 . . . 4  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  C_  B )
2726, 6syl 16 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  =  ( Base `  H
) )
2821adantr 465 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .+  =  ( +g  `  H ) )
29 proplem2 14947 . . . . . 6  |-  ( ( ( u  e.  S  /\  v  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( u  .+  v )  e.  S
)
3029ancoms 453 . . . . 5  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  (
u  e.  S  /\  v  e.  S )
)  ->  ( u  .+  v )  e.  S
)
31303impb 1192 . . . 4  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  u  e.  S  /\  v  e.  S )  ->  (
u  .+  v )  e.  S )
32313adant1l 1220 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S  /\  v  e.  S
)  ->  ( u  .+  v )  e.  S
)
3326sseld 3503 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
u  e.  S  ->  u  e.  B )
)
3426sseld 3503 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
v  e.  S  -> 
v  e.  B ) )
3526sseld 3503 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
w  e.  S  ->  w  e.  B )
)
3633, 34, 353anim123d 1306 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
( u  e.  S  /\  v  e.  S  /\  w  e.  S
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3736imp 429 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )
38 simpl1 999 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  G  e.  Mnd )
395, 19mndass 15741 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
4038, 39sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
4137, 40syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
42 simpl3 1001 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .0.  e.  S )
4326sselda 3504 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  u  e.  B )
44 issubmnd.z . . . . . 6  |-  .0.  =  ( 0g `  G )
455, 19, 44mndlid 15761 . . . . 5  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  (  .0.  .+  u
)  =  u )
4638, 45sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  B )  ->  (  .0.  .+  u )  =  u )
4743, 46syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (  .0.  .+  u )  =  u )
485, 19, 44mndrid 15762 . . . . 5  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  ( u  .+  .0.  )  =  u )
4938, 48sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  B )  ->  (
u  .+  .0.  )  =  u )
5043, 49syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (
u  .+  .0.  )  =  u )
5127, 28, 32, 41, 42, 47, 50ismndd 15764 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  H  e.  Mnd )
5225, 51impbida 830 1  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476   ` cfv 5588  (class class class)co 6285   Basecbs 14493   ↾s cress 14494   +g cplusg 14558   0gc0g 14698   Mndcmnd 15729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-recs 7043  df-rdg 7077  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-ndx 14496  df-slot 14497  df-base 14498  df-sets 14499  df-ress 14500  df-plusg 14571  df-0g 14700  df-mnd 15735
This theorem is referenced by:  issubm2  15801
  Copyright terms: Public domain W3C validator