MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Unicode version

Theorem issubmnd 15470
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b  |-  B  =  ( Base `  G
)
issubmnd.p  |-  .+  =  ( +g  `  G )
issubmnd.z  |-  .0.  =  ( 0g `  G )
issubmnd.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
issubmnd  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Distinct variable groups:    x, y, B    x, G, y    x, H, y    x,  .+ , y    x, S, y    x,  .0. , y

Proof of Theorem issubmnd
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 754 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  H  e.  Mnd )
2 simprl 755 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
3 simpll2 1028 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  C_  B )
4 issubmnd.h . . . . . . . 8  |-  H  =  ( Gs  S )
5 issubmnd.b . . . . . . . 8  |-  B  =  ( Base `  G
)
64, 5ressbas2 14250 . . . . . . 7  |-  ( S 
C_  B  ->  S  =  ( Base `  H
) )
73, 6syl 16 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  S  =  ( Base `  H ) )
82, 7eleqtrd 2519 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  ( Base `  H ) )
9 simprr 756 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  S )
109, 7eleqtrd 2519 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
y  e.  ( Base `  H ) )
11 eqid 2443 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
12 eqid 2443 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
1311, 12mndcl 15441 . . . . 5  |-  ( ( H  e.  Mnd  /\  x  e.  ( Base `  H )  /\  y  e.  ( Base `  H
) )  ->  (
x ( +g  `  H
) y )  e.  ( Base `  H
) )
141, 8, 10, 13syl3anc 1218 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( +g  `  H ) y )  e.  ( Base `  H
) )
15 fvex 5722 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
165, 15eqeltri 2513 . . . . . . . . 9  |-  B  e. 
_V
1716ssex 4457 . . . . . . . 8  |-  ( S 
C_  B  ->  S  e.  _V )
18173ad2ant2 1010 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  S  e.  _V )
19 issubmnd.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
204, 19ressplusg 14301 . . . . . . 7  |-  ( S  e.  _V  ->  .+  =  ( +g  `  H ) )
2118, 20syl 16 . . . . . 6  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  .+  =  ( +g  `  H ) )
2221ad2antrr 725 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  ->  .+  =  ( +g  `  H ) )
2322oveqd 6129 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  H
) y ) )
2414, 23, 73eltr4d 2524 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2524ralrimivva 2829 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  H  e.  Mnd )  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S )
26 simpl2 992 . . . 4  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  C_  B )
2726, 6syl 16 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  S  =  ( Base `  H
) )
2821adantr 465 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .+  =  ( +g  `  H ) )
29 proplem2 14648 . . . . . 6  |-  ( ( ( u  e.  S  /\  v  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( u  .+  v )  e.  S
)
3029ancoms 453 . . . . 5  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  (
u  e.  S  /\  v  e.  S )
)  ->  ( u  .+  v )  e.  S
)
31303impb 1183 . . . 4  |-  ( ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  /\  u  e.  S  /\  v  e.  S )  ->  (
u  .+  v )  e.  S )
32313adant1l 1210 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S  /\  v  e.  S
)  ->  ( u  .+  v )  e.  S
)
3326sseld 3376 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
u  e.  S  ->  u  e.  B )
)
3426sseld 3376 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
v  e.  S  -> 
v  e.  B ) )
3526sseld 3376 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
w  e.  S  ->  w  e.  B )
)
3633, 34, 353anim123d 1296 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  (
( u  e.  S  /\  v  e.  S  /\  w  e.  S
)  ->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
3736imp 429 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )
38 simpl1 991 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  G  e.  Mnd )
395, 19mndass 15442 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
4038, 39sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
4137, 40syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
42 simpl3 993 . . 3  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  .0.  e.  S )
4326sselda 3377 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  u  e.  B )
44 issubmnd.z . . . . . 6  |-  .0.  =  ( 0g `  G )
455, 19, 44mndlid 15462 . . . . 5  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  (  .0.  .+  u
)  =  u )
4638, 45sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  B )  ->  (  .0.  .+  u )  =  u )
4743, 46syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (  .0.  .+  u )  =  u )
485, 19, 44mndrid 15463 . . . . 5  |-  ( ( G  e.  Mnd  /\  u  e.  B )  ->  ( u  .+  .0.  )  =  u )
4938, 48sylan 471 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  B )  ->  (
u  .+  .0.  )  =  u )
5043, 49syldan 470 . . 3  |-  ( ( ( ( G  e. 
Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  /\  u  e.  S )  ->  (
u  .+  .0.  )  =  u )
5127, 28, 32, 41, 42, 47, 50ismndd 15465 . 2  |-  ( ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S )  ->  H  e.  Mnd )
5225, 51impbida 828 1  |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2736   _Vcvv 2993    C_ wss 3349   ` cfv 5439  (class class class)co 6112   Basecbs 14195   ↾s cress 14196   +g cplusg 14259   0gc0g 14399   Mndcmnd 15430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-recs 6853  df-rdg 6887  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-nn 10344  df-2 10401  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-0g 14401  df-mnd 15436
This theorem is referenced by:  issubm2  15497
  Copyright terms: Public domain W3C validator