MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgoi Structured version   Unicode version

Theorem issubgoi 24988
Description: Properties that determine a subgroup. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
issubgoi.1  |-  G  e. 
GrpOp
issubgoi.2  |-  X  =  ran  G
issubgoi.3  |-  U  =  (GId `  G )
issubgoi.4  |-  N  =  ( inv `  G
)
issubgoi.5  |-  Y  C_  X
issubgoi.6  |-  H  =  ( G  |`  ( Y  X.  Y ) )
issubgoi.7  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x G y )  e.  Y )
issubgoi.8  |-  U  e.  Y
issubgoi.9  |-  ( x  e.  Y  ->  ( N `  x )  e.  Y )
Assertion
Ref Expression
issubgoi  |-  H  e.  ( SubGrpOp `  G )
Distinct variable groups:    x, H, y    y, N    x, U, y    x, Y, y
Allowed substitution hints:    G( x, y)    N( x)    X( x, y)

Proof of Theorem issubgoi
Dummy variables  a 
b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubgoi.1 . 2  |-  G  e. 
GrpOp
2 issubgoi.2 . . . . 5  |-  X  =  ran  G
3 rnexg 6713 . . . . . 6  |-  ( G  e.  GrpOp  ->  ran  G  e. 
_V )
41, 3ax-mp 5 . . . . 5  |-  ran  G  e.  _V
52, 4eqeltri 2551 . . . 4  |-  X  e. 
_V
6 issubgoi.5 . . . 4  |-  Y  C_  X
75, 6ssexi 4592 . . 3  |-  Y  e. 
_V
82grpofo 24877 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  G :
( X  X.  X
) -onto-> X )
9 fof 5793 . . . . . . . 8  |-  ( G : ( X  X.  X ) -onto-> X  ->  G : ( X  X.  X ) --> X )
101, 8, 9mp2b 10 . . . . . . 7  |-  G :
( X  X.  X
) --> X
11 xpss12 5106 . . . . . . . 8  |-  ( ( Y  C_  X  /\  Y  C_  X )  -> 
( Y  X.  Y
)  C_  ( X  X.  X ) )
126, 6, 11mp2an 672 . . . . . . 7  |-  ( Y  X.  Y )  C_  ( X  X.  X
)
13 fssres 5749 . . . . . . 7  |-  ( ( G : ( X  X.  X ) --> X  /\  ( Y  X.  Y )  C_  ( X  X.  X ) )  ->  ( G  |`  ( Y  X.  Y
) ) : ( Y  X.  Y ) --> X )
1410, 12, 13mp2an 672 . . . . . 6  |-  ( G  |`  ( Y  X.  Y
) ) : ( Y  X.  Y ) --> X
15 issubgoi.6 . . . . . . 7  |-  H  =  ( G  |`  ( Y  X.  Y ) )
1615feq1i 5721 . . . . . 6  |-  ( H : ( Y  X.  Y ) --> X  <->  ( G  |`  ( Y  X.  Y
) ) : ( Y  X.  Y ) --> X )
1714, 16mpbir 209 . . . . 5  |-  H :
( Y  X.  Y
) --> X
18 ffn 5729 . . . . 5  |-  ( H : ( Y  X.  Y ) --> X  ->  H  Fn  ( Y  X.  Y ) )
1917, 18ax-mp 5 . . . 4  |-  H  Fn  ( Y  X.  Y
)
2015oveqi 6295 . . . . . . . 8  |-  ( a H b )  =  ( a ( G  |`  ( Y  X.  Y
) ) b )
21 ovres 6424 . . . . . . . 8  |-  ( ( a  e.  Y  /\  b  e.  Y )  ->  ( a ( G  |`  ( Y  X.  Y
) ) b )  =  ( a G b ) )
2220, 21syl5eq 2520 . . . . . . 7  |-  ( ( a  e.  Y  /\  b  e.  Y )  ->  ( a H b )  =  ( a G b ) )
2322issubgoilem 24987 . . . . . 6  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x H y )  =  ( x G y ) )
24 issubgoi.7 . . . . . 6  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x G y )  e.  Y )
2523, 24eqeltrd 2555 . . . . 5  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( x H y )  e.  Y )
2625rgen2a 2891 . . . 4  |-  A. x  e.  Y  A. y  e.  Y  ( x H y )  e.  Y
27 ffnov 6388 . . . 4  |-  ( H : ( Y  X.  Y ) --> Y  <->  ( H  Fn  ( Y  X.  Y
)  /\  A. x  e.  Y  A. y  e.  Y  ( x H y )  e.  Y ) )
2819, 26, 27mpbir2an 918 . . 3  |-  H :
( Y  X.  Y
) --> Y
2923oveq1d 6297 . . . . 5  |-  ( ( x  e.  Y  /\  y  e.  Y )  ->  ( ( x H y ) G z )  =  ( ( x G y ) G z ) )
30293adant3 1016 . . . 4  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( ( x H y ) G z )  =  ( ( x G y ) G z ) )
3122issubgoilem 24987 . . . . . 6  |-  ( ( ( x H y )  e.  Y  /\  z  e.  Y )  ->  ( ( x H y ) H z )  =  ( ( x H y ) G z ) )
3225, 31sylan 471 . . . . 5  |-  ( ( ( x  e.  Y  /\  y  e.  Y
)  /\  z  e.  Y )  ->  (
( x H y ) H z )  =  ( ( x H y ) G z ) )
33323impa 1191 . . . 4  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( ( x H y ) H z )  =  ( ( x H y ) G z ) )
3422issubgoilem 24987 . . . . . . 7  |-  ( ( y  e.  Y  /\  z  e.  Y )  ->  ( y H z )  =  ( y G z ) )
3534oveq2d 6298 . . . . . 6  |-  ( ( y  e.  Y  /\  z  e.  Y )  ->  ( x G ( y H z ) )  =  ( x G ( y G z ) ) )
36353adant1 1014 . . . . 5  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( x G ( y H z ) )  =  ( x G ( y G z ) ) )
3728fovcl 6389 . . . . . . 7  |-  ( ( y  e.  Y  /\  z  e.  Y )  ->  ( y H z )  e.  Y )
3822issubgoilem 24987 . . . . . . 7  |-  ( ( x  e.  Y  /\  ( y H z )  e.  Y )  ->  ( x H ( y H z ) )  =  ( x G ( y H z ) ) )
3937, 38sylan2 474 . . . . . 6  |-  ( ( x  e.  Y  /\  ( y  e.  Y  /\  z  e.  Y
) )  ->  (
x H ( y H z ) )  =  ( x G ( y H z ) ) )
40393impb 1192 . . . . 5  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( x H ( y H z ) )  =  ( x G ( y H z ) ) )
416sseli 3500 . . . . . 6  |-  ( x  e.  Y  ->  x  e.  X )
426sseli 3500 . . . . . 6  |-  ( y  e.  Y  ->  y  e.  X )
436sseli 3500 . . . . . 6  |-  ( z  e.  Y  ->  z  e.  X )
442grpoass 24881 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (
x  e.  X  /\  y  e.  X  /\  z  e.  X )
)  ->  ( (
x G y ) G z )  =  ( x G ( y G z ) ) )
451, 44mpan 670 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
4641, 42, 43, 45syl3an 1270 . . . . 5  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
4736, 40, 463eqtr4d 2518 . . . 4  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( x H ( y H z ) )  =  ( ( x G y ) G z ) )
4830, 33, 473eqtr4d 2518 . . 3  |-  ( ( x  e.  Y  /\  y  e.  Y  /\  z  e.  Y )  ->  ( ( x H y ) H z )  =  ( x H ( y H z ) ) )
49 issubgoi.8 . . 3  |-  U  e.  Y
5022issubgoilem 24987 . . . . 5  |-  ( ( U  e.  Y  /\  x  e.  Y )  ->  ( U H x )  =  ( U G x ) )
5149, 50mpan 670 . . . 4  |-  ( x  e.  Y  ->  ( U H x )  =  ( U G x ) )
52 issubgoi.3 . . . . . 6  |-  U  =  (GId `  G )
532, 52grpolid 24897 . . . . 5  |-  ( ( G  e.  GrpOp  /\  x  e.  X )  ->  ( U G x )  =  x )
541, 41, 53sylancr 663 . . . 4  |-  ( x  e.  Y  ->  ( U G x )  =  x )
5551, 54eqtrd 2508 . . 3  |-  ( x  e.  Y  ->  ( U H x )  =  x )
56 issubgoi.9 . . 3  |-  ( x  e.  Y  ->  ( N `  x )  e.  Y )
5722issubgoilem 24987 . . . . 5  |-  ( ( ( N `  x
)  e.  Y  /\  x  e.  Y )  ->  ( ( N `  x ) H x )  =  ( ( N `  x ) G x ) )
5856, 57mpancom 669 . . . 4  |-  ( x  e.  Y  ->  (
( N `  x
) H x )  =  ( ( N `
 x ) G x ) )
59 issubgoi.4 . . . . . 6  |-  N  =  ( inv `  G
)
602, 52, 59grpolinv 24906 . . . . 5  |-  ( ( G  e.  GrpOp  /\  x  e.  X )  ->  (
( N `  x
) G x )  =  U )
611, 41, 60sylancr 663 . . . 4  |-  ( x  e.  Y  ->  (
( N `  x
) G x )  =  U )
6258, 61eqtrd 2508 . . 3  |-  ( x  e.  Y  ->  (
( N `  x
) H x )  =  U )
637, 28, 48, 49, 55, 56, 62isgrpoi 24876 . 2  |-  H  e. 
GrpOp
64 resss 5295 . . 3  |-  ( G  |`  ( Y  X.  Y
) )  C_  G
6515, 64eqsstri 3534 . 2  |-  H  C_  G
66 issubgo 24981 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
671, 63, 65, 66mpbir3an 1178 1  |-  H  e.  ( SubGrpOp `  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    C_ wss 3476    X. cxp 4997   ran crn 5000    |` cres 5001    Fn wfn 5581   -->wf 5582   -onto->wfo 5584   ` cfv 5586  (class class class)co 6282   GrpOpcgr 24864  GIdcgi 24865   invcgn 24866   SubGrpOpcsubgo 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-grpo 24869  df-gid 24870  df-ginv 24871  df-subgo 24980
This theorem is referenced by:  readdsubgo  25031  zaddsubgo  25032  hhssabloi  25854  ghomgrpilem2  28501
  Copyright terms: Public domain W3C validator