MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg4 Structured version   Unicode version

Theorem issubg4 15691
Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b  |-  B  =  ( Base `  G
)
issubg4.p  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
issubg4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Distinct variable groups:    x, y, B    x, G, y    x,  .- , y    x, S, y

Proof of Theorem issubg4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4  |-  B  =  ( Base `  G
)
21subgss 15673 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
3 eqid 2438 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43subg0cl 15680 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
5 ne0i 3638 . . . 4  |-  ( ( 0g `  G )  e.  S  ->  S  =/=  (/) )
64, 5syl 16 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  =/=  (/) )
7 issubg4.p . . . . . 6  |-  .-  =  ( -g `  G )
87subgsubcl 15683 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .-  y )  e.  S )
983expb 1188 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .-  y )  e.  S
)
109ralrimivva 2803 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
112, 6, 103jca 1168 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
) )
12 simplrl 759 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  S  C_  B
)
13 simplrr 760 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  S  =/=  (/) )
14 simprr 756 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  S  =/=  (/) )
15 r19.2z 3764 . . . . . . . . . . . . 13  |-  ( ( S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
1614, 15sylan 471 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
17 oveq2 6094 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  x  ->  (
x  .-  y )  =  ( x  .-  x ) )
1817eleq1d 2504 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
( x  .-  y
)  e.  S  <->  ( x  .-  x )  e.  S
) )
1918rspcv 3064 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x  .-  x )  e.  S ) )
2019adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( x 
.-  x )  e.  S ) )
21 simprl 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  ->  S  C_  B )
2221sselda 3351 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  x  e.  B )
231, 3, 7grpsubid 15601 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .-  x
)  =  ( 0g
`  G ) )
2423adantlr 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  B
)  ->  ( x  .-  x )  =  ( 0g `  G ) )
2522, 24syldan 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( x  .-  x )  =  ( 0g `  G ) )
2625eleq1d 2504 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( (
x  .-  x )  e.  S  <->  ( 0g `  G )  e.  S
) )
2720, 26sylibd 214 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( 0g
`  G )  e.  S ) )
2827rexlimdva 2836 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  -> 
( E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  ( 0g `  G
)  e.  S ) )
2928imp 429 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( 0g `  G )  e.  S
)
3016, 29syldan 470 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( 0g `  G )  e.  S
)
31 simpr 461 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
32 oveq1 6093 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0g `  G )  ->  (
x  .-  y )  =  ( ( 0g
`  G )  .-  y ) )
3332eleq1d 2504 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  G )  ->  (
( x  .-  y
)  e.  S  <->  ( ( 0g `  G )  .-  y )  e.  S
) )
3433ralbidv 2730 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  G )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  <->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
) )
3534rspcv 3064 . . . . . . . . . . 11  |-  ( ( 0g `  G )  e.  S  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
) )
3630, 31, 35sylc 60 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
)
371, 3grpidcl 15557 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
3837ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( 0g `  G )  e.  B
)
3921sselda 3351 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  y  e.  B )
40 eqid 2438 . . . . . . . . . . . . . . . 16  |-  ( +g  `  G )  =  ( +g  `  G )
41 eqid 2438 . . . . . . . . . . . . . . . 16  |-  ( invg `  G )  =  ( invg `  G )
421, 40, 41, 7grpsubval 15572 . . . . . . . . . . . . . . 15  |-  ( ( ( 0g `  G
)  e.  B  /\  y  e.  B )  ->  ( ( 0g `  G )  .-  y
)  =  ( ( 0g `  G ) ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
4338, 39, 42syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G )  .-  y )  =  ( ( 0g `  G
) ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
44 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  G  e.  Grp )
451, 41grpinvcl 15574 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
4644, 39, 45syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( invg `  G ) `
 y )  e.  B )
471, 40, 3grplid 15559 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  y
)  e.  B )  ->  ( ( 0g
`  G ) ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( ( invg `  G ) `  y
) )
4844, 46, 47syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( ( invg `  G ) `  y
) )
4943, 48eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( ( 0g `  G )  .-  y )  =  ( ( invg `  G ) `  y
) )
5049eleq1d 2504 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  y  e.  S
)  ->  ( (
( 0g `  G
)  .-  y )  e.  S  <->  ( ( invg `  G ) `
 y )  e.  S ) )
5150ralbidva 2726 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  -> 
( A. y  e.  S  ( ( 0g
`  G )  .-  y )  e.  S  <->  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S ) )
5251adantr 465 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( A. y  e.  S  (
( 0g `  G
)  .-  y )  e.  S  <->  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S ) )
5336, 52mpbid 210 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )
54 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( invg `  G ) `  y
)  =  ( ( invg `  G
) `  z )
)
5554eleq1d 2504 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( invg `  G ) `  y
)  e.  S  <->  ( ( invg `  G ) `
 z )  e.  S ) )
5655rspccva 3067 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S  /\  z  e.  S )  ->  ( ( invg `  G ) `  z
)  e.  S )
5756ad2ant2l 745 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( ( invg `  G ) `  z
)  e.  S )
58 oveq2 6094 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( invg `  G ) `
 z )  -> 
( x  .-  y
)  =  ( x 
.-  ( ( invg `  G ) `
 z ) ) )
5958eleq1d 2504 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( invg `  G ) `
 z )  -> 
( ( x  .-  y )  e.  S  <->  ( x  .-  ( ( invg `  G
) `  z )
)  e.  S ) )
6059rspcv 3064 . . . . . . . . . . . . . . 15  |-  ( ( ( invg `  G ) `  z
)  e.  S  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  (
( invg `  G ) `  z
) )  e.  S
) )
6157, 60syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  (
( invg `  G ) `  z
) )  e.  S
) )
62 simplll 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  G  e.  Grp )
63 simplrl 759 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  ->  S  C_  B )
6463adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  S  C_  B )
65 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  x  e.  S )
6664, 65sseldd 3352 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  ->  x  e.  B )
67 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
6864, 67sseldd 3352 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
z  e.  B )
691, 40, 7, 41, 62, 66, 68grpsubinv 15590 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( x  .-  (
( invg `  G ) `  z
) )  =  ( x ( +g  `  G
) z ) )
7069eleq1d 2504 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( ( x  .-  ( ( invg `  G ) `  z
) )  e.  S  <->  ( x ( +g  `  G
) z )  e.  S ) )
7161, 70sylibd 214 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  ( x  e.  S  /\  z  e.  S ) )  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x ( +g  `  G ) z )  e.  S ) )
7271anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S )  /\  x  e.  S
)  /\  z  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x ( +g  `  G
) z )  e.  S ) )
7372ralrimdva 2801 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  x  e.  S
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
) )
7473ralimdva 2789 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
) )
7574impancom 440 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( A. y  e.  S  (
( invg `  G ) `  y
)  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x ( +g  `  G ) z )  e.  S ) )
7653, 75mpd 15 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. x  e.  S  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
)
77 oveq1 6093 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x ( +g  `  G
) z )  =  ( y ( +g  `  G ) z ) )
7877eleq1d 2504 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x ( +g  `  G ) z )  e.  S  <->  ( y
( +g  `  G ) z )  e.  S
) )
7978ralbidv 2730 . . . . . . . . 9  |-  ( x  =  y  ->  ( A. z  e.  S  ( x ( +g  `  G ) z )  e.  S  <->  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
) )
8079cbvralv 2942 . . . . . . . 8  |-  ( A. x  e.  S  A. z  e.  S  (
x ( +g  `  G
) z )  e.  S  <->  A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S )
8176, 80sylib 196 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
)
82 r19.26 2844 . . . . . . 7  |-  ( A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S )  <-> 
( A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S ) )
8381, 53, 82sylanbrc 664 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( invg `  G
) `  y )  e.  S ) )
8412, 13, 833jca 1168 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  S  =/=  (/) ) )  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  ( y
( +g  `  G ) z )  e.  S  /\  ( ( invg `  G ) `  y
)  e.  S ) ) )
8584exp42 611 . . . 4  |-  ( G  e.  Grp  ->  ( S  C_  B  ->  ( S  =/=  (/)  ->  ( A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S  ->  ( S 
C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( invg `  G
) `  y )  e.  S ) ) ) ) ) )
86853impd 1201 . . 3  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( invg `  G
) `  y )  e.  S ) ) ) )
871, 40, 41issubg2 15687 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S ) ) ) )
8886, 87sylibrd 234 . 2  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  S  e.  (SubGrp `  G )
) )
8911, 88impbid2 204 1  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  S  =/=  (/)  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    C_ wss 3323   (/)c0 3632   ` cfv 5413  (class class class)co 6086   Basecbs 14166   +g cplusg 14230   0gc0g 14370   Grpcgrp 15402   invgcminusg 15403   -gcsg 15405  SubGrpcsubg 15666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-0g 14372  df-mnd 15407  df-grp 15536  df-minusg 15537  df-sbg 15538  df-subg 15669
This theorem is referenced by:  dprdsubg  16509  clssubg  19654  tgpconcomp  19658  dmatsgrp  30801  scmatsgrp  30808  scmatsgrp1  30812
  Copyright terms: Public domain W3C validator