MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg Structured version   Unicode version

Theorem issubg 15702
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
issubg  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )

Proof of Theorem issubg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 15699 . . . 4  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
21dmmptss 5355 . . 3  |-  dom SubGrp  C_  Grp
3 elfvdm 5737 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  dom SubGrp )
42, 3sseldi 3375 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 simp1 988 . 2  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp )  ->  G  e.  Grp )
6 fveq2 5712 . . . . . . . . . 10  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
7 issubg.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
86, 7syl6eqr 2493 . . . . . . . . 9  |-  ( w  =  G  ->  ( Base `  w )  =  B )
98pweqd 3886 . . . . . . . 8  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
10 oveq1 6119 . . . . . . . . 9  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
1110eleq1d 2509 . . . . . . . 8  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
129, 11rabeqbidv 2988 . . . . . . 7  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P B  |  ( Gs  s )  e.  Grp } )
13 fvex 5722 . . . . . . . . . 10  |-  ( Base `  G )  e.  _V
147, 13eqeltri 2513 . . . . . . . . 9  |-  B  e. 
_V
1514pwex 4496 . . . . . . . 8  |-  ~P B  e.  _V
1615rabex 4464 . . . . . . 7  |-  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp }  e.  _V
1712, 1, 16fvmpt 5795 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P B  |  ( Gs  s )  e.  Grp } )
1817eleq2d 2510 . . . . 5  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  S  e.  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp } ) )
19 oveq2 6120 . . . . . . . 8  |-  ( s  =  S  ->  ( Gs  s )  =  ( Gs  S ) )
2019eleq1d 2509 . . . . . . 7  |-  ( s  =  S  ->  (
( Gs  s )  e. 
Grp 
<->  ( Gs  S )  e.  Grp ) )
2120elrab 3138 . . . . . 6  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) )
2214elpw2 4477 . . . . . . 7  |-  ( S  e.  ~P B  <->  S  C_  B
)
2322anbi1i 695 . . . . . 6  |-  ( ( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) 
<->  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) )
2421, 23bitri 249 . . . . 5  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  C_  B  /\  ( Gs  S )  e.  Grp ) )
2518, 24syl6bb 261 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
26 ibar 504 . . . 4  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) ) )
2725, 26bitrd 253 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) ) )
28 3anass 969 . . 3  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
2927, 28syl6bbr 263 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
304, 5, 29pm5.21nii 353 1  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2740   _Vcvv 2993    C_ wss 3349   ~Pcpw 3881   dom cdm 4861   ` cfv 5439  (class class class)co 6112   Basecbs 14195   ↾s cress 14196   Grpcgrp 15431  SubGrpcsubg 15696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fv 5447  df-ov 6115  df-subg 15699
This theorem is referenced by:  subgss  15703  subgid  15704  subggrp  15705  subgrcl  15707  issubg2  15717  resgrpisgrp  15723  subsubg  15725  pgrpsubgsymgbi  15933  opprsubg  16750  subrgsubg  16893  cphsubrglem  20718  suborng  26305
  Copyright terms: Public domain W3C validator