MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubc3 Structured version   Unicode version

Theorem issubc3 14758
Description: Alternate definition of a subcategory, as a subset of the category which is itself a category. The assumption that the identity be closed is necessary just as in the case of a monoid, issubm2 15475, for the same reasons, since categories are a generalization of monoids. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
issubc3.h  |-  H  =  ( Hom f  `  C )
issubc3.i  |-  .1.  =  ( Id `  C )
issubc3.1  |-  D  =  ( C  |`cat  J )
issubc3.c  |-  ( ph  ->  C  e.  Cat )
issubc3.a  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
Assertion
Ref Expression
issubc3  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Distinct variable groups:    x, C    x, D    x, H    ph, x    x, J    x, S
Allowed substitution hint:    .1. ( x)

Proof of Theorem issubc3
Dummy variables  f 
g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  e.  (Subcat `  C ) )
2 issubc3.h . . . 4  |-  H  =  ( Hom f  `  C )
31, 2subcssc 14749 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  J  C_cat  H )
41adantr 465 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  e.  (Subcat `  C )
)
5 issubc3.a . . . . . 6  |-  ( ph  ->  J  Fn  ( S  X.  S ) )
65ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  J  Fn  ( S  X.  S
) )
7 simpr 461 . . . . 5  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  x  e.  S )
8 issubc3.i . . . . 5  |-  .1.  =  ( Id `  C )
94, 6, 7, 8subcidcl 14753 . . . 4  |-  ( ( ( ph  /\  J  e.  (Subcat `  C )
)  /\  x  e.  S )  ->  (  .1.  `  x )  e.  ( x J x ) )
109ralrimiva 2798 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
11 issubc3.1 . . . 4  |-  D  =  ( C  |`cat  J )
1211, 1subccat 14757 . . 3  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  D  e.  Cat )
133, 10, 123jca 1168 . 2  |-  ( (
ph  /\  J  e.  (Subcat `  C ) )  ->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e. 
Cat ) )
14 simpr1 994 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  C_cat  H )
15 simpr2 995 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  (  .1.  `  x )  e.  ( x J x ) )
16 eqid 2442 . . . . . . . . . 10  |-  ( Base `  D )  =  (
Base `  D )
17 eqid 2442 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
18 eqid 2442 . . . . . . . . . 10  |-  (comp `  D )  =  (comp `  D )
19 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  D  e.  Cat )
20 simprl1 1033 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  S )
21 eqid 2442 . . . . . . . . . . . 12  |-  ( Base `  C )  =  (
Base `  C )
22 issubc3.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Cat )
2322ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  C  e.  Cat )
245ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  Fn  ( S  X.  S
) )
252, 21homffn 14631 . . . . . . . . . . . . . 14  |-  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) )
2625a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  H  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
27 simplrl 759 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  C_cat  H )
2824, 26, 27ssc1 14733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  C_  ( Base `  C
) )
2911, 21, 23, 24, 28rescbas 14741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  S  =  ( Base `  D
) )
3020, 29eleqtrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  x  e.  ( Base `  D
) )
31 simprl2 1034 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  S )
3231, 29eleqtrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  y  e.  ( Base `  D
) )
33 simprl3 1035 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  S )
3433, 29eleqtrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  z  e.  ( Base `  D
) )
35 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x J y ) )
3611, 21, 23, 24, 28reschom 14742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  J  =  ( Hom  `  D
) )
3736oveqd 6107 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J y )  =  ( x ( Hom  `  D )
y ) )
3835, 37eleqtrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  f  e.  ( x ( Hom  `  D ) y ) )
39 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y J z ) )
4036oveqd 6107 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
y J z )  =  ( y ( Hom  `  D )
z ) )
4139, 40eleqtrd 2518 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  g  e.  ( y ( Hom  `  D ) z ) )
4216, 17, 18, 19, 30, 32, 34, 38, 41catcocl 14622 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  D ) z ) f )  e.  ( x ( Hom  `  D
) z ) )
43 eqid 2442 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
4411, 21, 23, 24, 28, 43rescco 14744 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (comp `  C )  =  (comp `  D ) )
4544oveqd 6107 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  ( <. x ,  y >.
(comp `  C )
z )  =  (
<. x ,  y >.
(comp `  D )
z ) )
4645oveqd 6107 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  =  ( g ( <. x ,  y >. (comp `  D ) z ) f ) )
4736oveqd 6107 . . . . . . . . 9  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
x J z )  =  ( x ( Hom  `  D )
z ) )
4842, 46, 473eltr4d 2523 . . . . . . . 8  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  /\  (
f  e.  ( x J y )  /\  g  e.  ( y J z ) ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
4948anassrs 648 . . . . . . 7  |-  ( ( ( ( ph  /\  ( J  C_cat  H  /\  D  e.  Cat )
)  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  /\  ( f  e.  ( x J y )  /\  g  e.  ( y J z ) ) )  ->  (
g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )
5049ralrimivva 2807 . . . . . 6  |-  ( ( ( ph  /\  ( J  C_cat  H  /\  D  e. 
Cat ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S
) )  ->  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
5150ralrimivvva 2808 . . . . 5  |-  ( (
ph  /\  ( J  C_cat  H  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
52513adantr2 1148 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) )
53 r19.26 2848 . . . 4  |-  ( A. x  e.  S  (
(  .1.  `  x
)  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g ( <. x ,  y >. (comp `  C ) z ) f )  e.  ( x J z ) )  <->  ( A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  A. x  e.  S  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5415, 52, 53sylanbrc 664 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) )
5522adantr 465 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  C  e.  Cat )
565adantr 465 . . . 4  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  Fn  ( S  X.  S
) )
572, 8, 43, 55, 56issubc2 14748 . . 3  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  ( J  e.  (Subcat `  C
)  <->  ( J  C_cat  H  /\  A. x  e.  S  ( (  .1.  `  x )  e.  ( x J x )  /\  A. y  e.  S  A. z  e.  S  A. f  e.  ( x J y ) A. g  e.  ( y J z ) ( g (
<. x ,  y >.
(comp `  C )
z ) f )  e.  ( x J z ) ) ) ) )
5814, 54, 57mpbir2and 913 . 2  |-  ( (
ph  /\  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) )  ->  J  e.  (Subcat `  C )
)
5913, 58impbida 828 1  |-  ( ph  ->  ( J  e.  (Subcat `  C )  <->  ( J  C_cat  H  /\  A. x  e.  S  (  .1.  `  x )  e.  ( x J x )  /\  D  e.  Cat ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   <.cop 3882   class class class wbr 4291    X. cxp 4837    Fn wfn 5412   ` cfv 5417  (class class class)co 6090   Basecbs 14173   Hom chom 14248  compcco 14249   Catccat 14601   Idccid 14602   Hom f chomf 14603    C_cat cssc 14719    |`cat cresc 14720  Subcatcsubc 14721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-pm 7216  df-ixp 7263  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-hom 14261  df-cco 14262  df-cat 14605  df-cid 14606  df-homf 14607  df-ssc 14722  df-resc 14723  df-subc 14724
This theorem is referenced by:  subsubc  14762
  Copyright terms: Public domain W3C validator