MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa Structured version   Unicode version

Theorem issubassa 17394
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
issubassa.s  |-  S  =  ( Ws  A )
issubassa.l  |-  L  =  ( LSubSp `  W )
issubassa.v  |-  V  =  ( Base `  W
)
issubassa.o  |-  .1.  =  ( 1r `  W )
Assertion
Ref Expression
issubassa  |-  ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V
)  ->  ( S  e. AssAlg  <-> 
( A  e.  (SubRing `  W )  /\  A  e.  L ) ) )

Proof of Theorem issubassa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 991 . . . . . 6  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  W  e. AssAlg )
2 assarng 17391 . . . . . 6  |-  ( W  e. AssAlg  ->  W  e.  Ring )
31, 2syl 16 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  W  e.  Ring )
4 issubassa.s . . . . . 6  |-  S  =  ( Ws  A )
5 assarng 17391 . . . . . . 7  |-  ( S  e. AssAlg  ->  S  e.  Ring )
65adantl 466 . . . . . 6  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  S  e.  Ring )
74, 6syl5eqelr 2527 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  ( Ws  A
)  e.  Ring )
83, 7jca 532 . . . 4  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  ( W  e.  Ring  /\  ( Ws  A
)  e.  Ring )
)
9 simpl3 993 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  A  C_  V
)
10 simpl2 992 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  .1.  e.  A )
119, 10jca 532 . . . 4  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  ( A  C_  V  /\  .1.  e.  A ) )
12 issubassa.v . . . . 5  |-  V  =  ( Base `  W
)
13 issubassa.o . . . . 5  |-  .1.  =  ( 1r `  W )
1412, 13issubrg 16864 . . . 4  |-  ( A  e.  (SubRing `  W
)  <->  ( ( W  e.  Ring  /\  ( Ws  A )  e.  Ring )  /\  ( A  C_  V  /\  .1.  e.  A
) ) )
158, 11, 14sylanbrc 664 . . 3  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  A  e.  (SubRing `  W ) )
16 assalmod 17390 . . . . 5  |-  ( S  e. AssAlg  ->  S  e.  LMod )
1716adantl 466 . . . 4  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  S  e.  LMod )
18 assalmod 17390 . . . . 5  |-  ( W  e. AssAlg  ->  W  e.  LMod )
19 issubassa.l . . . . . 6  |-  L  =  ( LSubSp `  W )
204, 12, 19islss3 17039 . . . . 5  |-  ( W  e.  LMod  ->  ( A  e.  L  <->  ( A  C_  V  /\  S  e. 
LMod ) ) )
211, 18, 203syl 20 . . . 4  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  ( A  e.  L  <->  ( A  C_  V  /\  S  e.  LMod ) ) )
229, 17, 21mpbir2and 913 . . 3  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  A  e.  L )
2315, 22jca 532 . 2  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  S  e. AssAlg )  ->  ( A  e.  (SubRing `  W )  /\  A  e.  L
) )
2412subrgss 16865 . . . . . 6  |-  ( A  e.  (SubRing `  W
)  ->  A  C_  V
)
2524ad2antrl 727 . . . . 5  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  A  C_  V )
264, 12ressbas2 14228 . . . . 5  |-  ( A 
C_  V  ->  A  =  ( Base `  S
) )
2725, 26syl 16 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  A  =  ( Base `  S ) )
28 eqid 2442 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
294, 28resssca 14315 . . . . 5  |-  ( A  e.  (SubRing `  W
)  ->  (Scalar `  W
)  =  (Scalar `  S ) )
3029ad2antrl 727 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  -> 
(Scalar `  W )  =  (Scalar `  S )
)
31 eqidd 2443 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  -> 
( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  W
) ) )
32 eqid 2442 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
334, 32ressvsca 14316 . . . . 5  |-  ( A  e.  (SubRing `  W
)  ->  ( .s `  W )  =  ( .s `  S ) )
3433ad2antrl 727 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  -> 
( .s `  W
)  =  ( .s
`  S ) )
35 eqid 2442 . . . . . 6  |-  ( .r
`  W )  =  ( .r `  W
)
364, 35ressmulr 14290 . . . . 5  |-  ( A  e.  (SubRing `  W
)  ->  ( .r `  W )  =  ( .r `  S ) )
3736ad2antrl 727 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  -> 
( .r `  W
)  =  ( .r
`  S ) )
38 simpr 461 . . . . 5  |-  ( ( A  e.  (SubRing `  W
)  /\  A  e.  L )  ->  A  e.  L )
394, 19lsslmod 17040 . . . . 5  |-  ( ( W  e.  LMod  /\  A  e.  L )  ->  S  e.  LMod )
4018, 38, 39syl2an 477 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  S  e.  LMod )
414subrgrng 16867 . . . . 5  |-  ( A  e.  (SubRing `  W
)  ->  S  e.  Ring )
4241ad2antrl 727 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  S  e.  Ring )
4328assasca 17392 . . . . 5  |-  ( W  e. AssAlg  ->  (Scalar `  W )  e.  CRing )
4443adantr 465 . . . 4  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  -> 
(Scalar `  W )  e.  CRing )
45 simpll 753 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  ->  W  e. AssAlg )
46 simpr1 994 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  ->  x  e.  ( Base `  (Scalar `  W )
) )
4725adantr 465 . . . . . 6  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  ->  A  C_  V )
48 simpr2 995 . . . . . 6  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
4947, 48sseldd 3356 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
y  e.  V )
50 simpr3 996 . . . . . 6  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
5147, 50sseldd 3356 . . . . 5  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
z  e.  V )
52 eqid 2442 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
5312, 28, 52, 32, 35assaass 17388 . . . . 5  |-  ( ( W  e. AssAlg  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( x ( .s
`  W ) y ) ( .r `  W ) z )  =  ( x ( .s `  W ) ( y ( .r
`  W ) z ) ) )
5445, 46, 49, 51, 53syl13anc 1220 . . . 4  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x ( .s `  W ) y ) ( .r
`  W ) z )  =  ( x ( .s `  W
) ( y ( .r `  W ) z ) ) )
5512, 28, 52, 32, 35assaassr 17389 . . . . 5  |-  ( ( W  e. AssAlg  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
y ( .r `  W ) ( x ( .s `  W
) z ) )  =  ( x ( .s `  W ) ( y ( .r
`  W ) z ) ) )
5645, 46, 49, 51, 55syl13anc 1220 . . . 4  |-  ( ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  A  /\  z  e.  A ) )  -> 
( y ( .r
`  W ) ( x ( .s `  W ) z ) )  =  ( x ( .s `  W
) ( y ( .r `  W ) z ) ) )
5727, 30, 31, 34, 37, 40, 42, 44, 54, 56isassad 17393 . . 3  |-  ( ( W  e. AssAlg  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  S  e. AssAlg )
58573ad2antl1 1150 . 2  |-  ( ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V )  /\  ( A  e.  (SubRing `  W
)  /\  A  e.  L ) )  ->  S  e. AssAlg )
5923, 58impbida 828 1  |-  ( ( W  e. AssAlg  /\  .1.  e.  A  /\  A  C_  V
)  ->  ( S  e. AssAlg  <-> 
( A  e.  (SubRing `  W )  /\  A  e.  L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3327   ` cfv 5417  (class class class)co 6090   Basecbs 14173   ↾s cress 14174   .rcmulr 14238  Scalarcsca 14240   .scvsca 14241   1rcur 16602   Ringcrg 16644   CRingccrg 16645  SubRingcsubrg 16860   LModclmod 16947   LSubSpclss 17012  AssAlgcasa 17380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-sca 14253  df-vsca 14254  df-0g 14379  df-mnd 15414  df-grp 15544  df-minusg 15545  df-sbg 15546  df-subg 15677  df-mgp 16591  df-ur 16603  df-rng 16646  df-subrg 16862  df-lmod 16949  df-lss 17013  df-assa 17383
This theorem is referenced by:  mplassa  17532  ply1assa  17654
  Copyright terms: Public domain W3C validator