MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isstruct Structured version   Unicode version

Theorem isstruct 14489
Description: The property of being a structure with components in  M ... N. (Contributed by Mario Carneiro, 29-Aug-2015.)
Assertion
Ref Expression
isstruct  |-  ( F Struct  <. M ,  N >.  <->  (
( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( M ... N ) ) )

Proof of Theorem isstruct
StepHypRef Expression
1 isstruct2 14488 . 2  |-  ( F Struct  <. M ,  N >.  <->  ( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  <. M ,  N >. ) ) )
2 brinxp2 5053 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
3 df-br 4441 . . . 4  |-  ( M (  <_  i^i  ( NN  X.  NN ) ) N  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
42, 3bitr3i 251 . . 3  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  <->  <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) ) )
5 biid 236 . . 3  |-  ( Fun  ( F  \  { (/)
} )  <->  Fun  ( F 
\  { (/) } ) )
6 df-ov 6278 . . . 4  |-  ( M ... N )  =  ( ... `  <. M ,  N >. )
76sseq2i 3522 . . 3  |-  ( dom 
F  C_  ( M ... N )  <->  dom  F  C_  ( ... `  <. M ,  N >. ) )
84, 5, 73anbi123i 1180 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( M ... N ) )  <->  ( <. M ,  N >.  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( ... `  <. M ,  N >. )
) )
91, 8bitr4i 252 1  |-  ( F Struct  <. M ,  N >.  <->  (
( M  e.  NN  /\  N  e.  NN  /\  M  <_  N )  /\  Fun  ( F  \  { (/)
} )  /\  dom  F 
C_  ( M ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ w3a 968    e. wcel 1762    \ cdif 3466    i^i cin 3468    C_ wss 3469   (/)c0 3778   {csn 4020   <.cop 4026   class class class wbr 4440    X. cxp 4990   dom cdm 4992   Fun wfun 5573   ` cfv 5579  (class class class)co 6275    <_ cle 9618   NNcn 10525   ...cfz 11661   Struct cstr 14475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-struct 14481
This theorem is referenced by:  structfn  14492  strleun  14574  strle1  14575  eengbas  23953  ebtwntg  23954  ecgrtg  23955  elntg  23956
  Copyright terms: Public domain W3C validator