MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssc Structured version   Unicode version

Theorem isssc 14738
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
isssc.1  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
isssc.2  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
isssc.3  |-  ( ph  ->  T  e.  V )
Assertion
Ref Expression
isssc  |-  ( ph  ->  ( H  C_cat  J  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
Distinct variable groups:    x, y, H    x, J, y    x, S, y
Allowed substitution hints:    ph( x, y)    T( x, y)    V( x, y)

Proof of Theorem isssc
Dummy variables  t 
s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brssc 14732 . . . 4  |-  ( H 
C_cat  J  <->  E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) ) )
2 fndm 5515 . . . . . . . . . . . 12  |-  ( J  Fn  ( t  X.  t )  ->  dom  J  =  ( t  X.  t ) )
32adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( t  X.  t ) )
4 isssc.2 . . . . . . . . . . . . 13  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
54adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  J  Fn  ( T  X.  T
) )
6 fndm 5515 . . . . . . . . . . . 12  |-  ( J  Fn  ( T  X.  T )  ->  dom  J  =  ( T  X.  T ) )
75, 6syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  J  =  ( T  X.  T ) )
83, 7eqtr3d 2477 . . . . . . . . . 10  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  (
t  X.  t )  =  ( T  X.  T ) )
98dmeqd 5047 . . . . . . . . 9  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  dom  ( t  X.  t
)  =  dom  ( T  X.  T ) )
10 dmxpid 5064 . . . . . . . . 9  |-  dom  (
t  X.  t )  =  t
11 dmxpid 5064 . . . . . . . . 9  |-  dom  ( T  X.  T )  =  T
129, 10, 113eqtr3g 2498 . . . . . . . 8  |-  ( (
ph  /\  J  Fn  ( t  X.  t
) )  ->  t  =  T )
1312ex 434 . . . . . . 7  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  ->  t  =  T ) )
14 id 22 . . . . . . . . . 10  |-  ( t  =  T  ->  t  =  T )
1514, 14xpeq12d 4870 . . . . . . . . 9  |-  ( t  =  T  ->  (
t  X.  t )  =  ( T  X.  T ) )
1615fneq2d 5507 . . . . . . . 8  |-  ( t  =  T  ->  ( J  Fn  ( t  X.  t )  <->  J  Fn  ( T  X.  T
) ) )
174, 16syl5ibrcom 222 . . . . . . 7  |-  ( ph  ->  ( t  =  T  ->  J  Fn  (
t  X.  t ) ) )
1813, 17impbid 191 . . . . . 6  |-  ( ph  ->  ( J  Fn  (
t  X.  t )  <-> 
t  =  T ) )
1918anbi1d 704 . . . . 5  |-  ( ph  ->  ( ( J  Fn  ( t  X.  t
)  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) )  <->  ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
2019exbidv 1680 . . . 4  |-  ( ph  ->  ( E. t ( J  Fn  ( t  X.  t )  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
211, 20syl5bb 257 . . 3  |-  ( ph  ->  ( H  C_cat  J  <->  E. t
( t  =  T  /\  E. s  e. 
~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) ) )
22 isssc.3 . . . 4  |-  ( ph  ->  T  e.  V )
23 pweq 3868 . . . . . 6  |-  ( t  =  T  ->  ~P t  =  ~P T
)
2423rexeqdv 2929 . . . . 5  |-  ( t  =  T  ->  ( E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
2524ceqsexgv 3097 . . . 4  |-  ( T  e.  V  ->  ( E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
2622, 25syl 16 . . 3  |-  ( ph  ->  ( E. t ( t  =  T  /\  E. s  e.  ~P  t H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. s  e.  ~P  T H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) ) )
2721, 26bitrd 253 . 2  |-  ( ph  ->  ( H  C_cat  J  <->  E. s  e.  ~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z ) ) )
28 df-rex 2726 . . 3  |-  ( E. s  e.  ~P  T H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z )  <->  E. s
( s  e.  ~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )
) )
29 3anass 969 . . . . . . . 8  |-  ( ( H  e.  _V  /\  H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) )  <->  ( H  e.  _V  /\  ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) ) ) )
30 elixp2 7272 . . . . . . . 8  |-  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( H  e.  _V  /\  H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )
31 vex 2980 . . . . . . . . . . . 12  |-  s  e. 
_V
3231, 31xpex 6513 . . . . . . . . . . 11  |-  ( s  X.  s )  e. 
_V
33 fnex 5949 . . . . . . . . . . 11  |-  ( ( H  Fn  ( s  X.  s )  /\  ( s  X.  s
)  e.  _V )  ->  H  e.  _V )
3432, 33mpan2 671 . . . . . . . . . 10  |-  ( H  Fn  ( s  X.  s )  ->  H  e.  _V )
3534adantr 465 . . . . . . . . 9  |-  ( ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) )  ->  H  e.  _V )
3635pm4.71ri 633 . . . . . . . 8  |-  ( ( H  Fn  ( s  X.  s )  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) )  <-> 
( H  e.  _V  /\  ( H  Fn  (
s  X.  s )  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) ) )
3729, 30, 363bitr4i 277 . . . . . . 7  |-  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )
38 fndm 5515 . . . . . . . . . . . . . 14  |-  ( H  Fn  ( s  X.  s )  ->  dom  H  =  ( s  X.  s ) )
3938adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  H  =  ( s  X.  s ) )
40 isssc.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
4140adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  H  Fn  ( S  X.  S
) )
42 fndm 5515 . . . . . . . . . . . . . 14  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
4341, 42syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  H  =  ( S  X.  S ) )
4439, 43eqtr3d 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  (
s  X.  s )  =  ( S  X.  S ) )
4544dmeqd 5047 . . . . . . . . . . 11  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  dom  ( s  X.  s
)  =  dom  ( S  X.  S ) )
46 dmxpid 5064 . . . . . . . . . . 11  |-  dom  (
s  X.  s )  =  s
47 dmxpid 5064 . . . . . . . . . . 11  |-  dom  ( S  X.  S )  =  S
4845, 46, 473eqtr3g 2498 . . . . . . . . . 10  |-  ( (
ph  /\  H  Fn  ( s  X.  s
) )  ->  s  =  S )
4948ex 434 . . . . . . . . 9  |-  ( ph  ->  ( H  Fn  (
s  X.  s )  ->  s  =  S ) )
50 id 22 . . . . . . . . . . . 12  |-  ( s  =  S  ->  s  =  S )
5150, 50xpeq12d 4870 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
s  X.  s )  =  ( S  X.  S ) )
5251fneq2d 5507 . . . . . . . . . 10  |-  ( s  =  S  ->  ( H  Fn  ( s  X.  s )  <->  H  Fn  ( S  X.  S
) ) )
5340, 52syl5ibrcom 222 . . . . . . . . 9  |-  ( ph  ->  ( s  =  S  ->  H  Fn  (
s  X.  s ) ) )
5449, 53impbid 191 . . . . . . . 8  |-  ( ph  ->  ( H  Fn  (
s  X.  s )  <-> 
s  =  S ) )
5554anbi1d 704 . . . . . . 7  |-  ( ph  ->  ( ( H  Fn  ( s  X.  s
)  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) )  <->  ( s  =  S  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) ) )
5637, 55syl5bb 257 . . . . . 6  |-  ( ph  ->  ( H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z )  <->  ( s  =  S  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) )
5756anbi2d 703 . . . . 5  |-  ( ph  ->  ( ( s  e. 
~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z ) )  <->  ( s  e.  ~P T  /\  (
s  =  S  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) ) )
58 an12 795 . . . . 5  |-  ( ( s  e.  ~P T  /\  ( s  =  S  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( s  =  S  /\  (
s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )
) ) )
5957, 58syl6bb 261 . . . 4  |-  ( ph  ->  ( ( s  e. 
~P T  /\  H  e.  X_ z  e.  ( s  X.  s ) ~P ( J `  z ) )  <->  ( s  =  S  /\  (
s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )
) ) ) )
6059exbidv 1680 . . 3  |-  ( ph  ->  ( E. s ( s  e.  ~P T  /\  H  e.  X_ z  e.  ( s  X.  s
) ~P ( J `
 z ) )  <->  E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) ) ) )
6128, 60syl5bb 257 . 2  |-  ( ph  ->  ( E. s  e. 
~P  T H  e.  X_ z  e.  (
s  X.  s ) ~P ( J `  z )  <->  E. s
( s  =  S  /\  ( s  e. 
~P T  /\  A. z  e.  ( s  X.  s ) ( H `
 z )  e. 
~P ( J `  z ) ) ) ) )
62 exsimpl 1644 . . . . 5  |-  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  ->  E. s 
s  =  S )
63 isset 2981 . . . . 5  |-  ( S  e.  _V  <->  E. s 
s  =  S )
6462, 63sylibr 212 . . . 4  |-  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  ->  S  e.  _V )
6564a1i 11 . . 3  |-  ( ph  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  ->  S  e.  _V ) )
66 ssexg 4443 . . . . . 6  |-  ( ( S  C_  T  /\  T  e.  V )  ->  S  e.  _V )
6766expcom 435 . . . . 5  |-  ( T  e.  V  ->  ( S  C_  T  ->  S  e.  _V ) )
6822, 67syl 16 . . . 4  |-  ( ph  ->  ( S  C_  T  ->  S  e.  _V )
)
6968adantrd 468 . . 3  |-  ( ph  ->  ( ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) )  ->  S  e.  _V ) )
7031elpw 3871 . . . . . . 7  |-  ( s  e.  ~P T  <->  s  C_  T )
71 sseq1 3382 . . . . . . 7  |-  ( s  =  S  ->  (
s  C_  T  <->  S  C_  T
) )
7270, 71syl5bb 257 . . . . . 6  |-  ( s  =  S  ->  (
s  e.  ~P T  <->  S 
C_  T ) )
7351raleqdv 2928 . . . . . . 7  |-  ( s  =  S  ->  ( A. z  e.  (
s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )  <->  A. z  e.  ( S  X.  S ) ( H `  z )  e.  ~P ( J `
 z ) ) )
74 fvex 5706 . . . . . . . . . 10  |-  ( H `
 z )  e. 
_V
7574elpw 3871 . . . . . . . . 9  |-  ( ( H `  z )  e.  ~P ( J `
 z )  <->  ( H `  z )  C_  ( J `  z )
)
76 fveq2 5696 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
77 df-ov 6099 . . . . . . . . . . 11  |-  ( x H y )  =  ( H `  <. x ,  y >. )
7876, 77syl6eqr 2493 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
79 fveq2 5696 . . . . . . . . . . 11  |-  ( z  =  <. x ,  y
>.  ->  ( J `  z )  =  ( J `  <. x ,  y >. )
)
80 df-ov 6099 . . . . . . . . . . 11  |-  ( x J y )  =  ( J `  <. x ,  y >. )
8179, 80syl6eqr 2493 . . . . . . . . . 10  |-  ( z  =  <. x ,  y
>.  ->  ( J `  z )  =  ( x J y ) )
8278, 81sseq12d 3390 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( ( H `
 z )  C_  ( J `  z )  <-> 
( x H y )  C_  ( x J y ) ) )
8375, 82syl5bb 257 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( ( H `
 z )  e. 
~P ( J `  z )  <->  ( x H y )  C_  ( x J y ) ) )
8483ralxp 4986 . . . . . . 7  |-  ( A. z  e.  ( S  X.  S ) ( H `
 z )  e. 
~P ( J `  z )  <->  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) )
8573, 84syl6bb 261 . . . . . 6  |-  ( s  =  S  ->  ( A. z  e.  (
s  X.  s ) ( H `  z
)  e.  ~P ( J `  z )  <->  A. x  e.  S  A. y  e.  S  (
x H y ) 
C_  ( x J y ) ) )
8672, 85anbi12d 710 . . . . 5  |-  ( s  =  S  ->  (
( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) ) ) )
8786ceqsexgv 3097 . . . 4  |-  ( S  e.  _V  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s ) ( H `  z )  e.  ~P ( J `
 z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  (
x J y ) ) ) )
8887a1i 11 . . 3  |-  ( ph  ->  ( S  e.  _V  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) ) )
8965, 69, 88pm5.21ndd 354 . 2  |-  ( ph  ->  ( E. s ( s  =  S  /\  ( s  e.  ~P T  /\  A. z  e.  ( s  X.  s
) ( H `  z )  e.  ~P ( J `  z ) ) )  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
9027, 61, 893bitrd 279 1  |-  ( ph  ->  ( H  C_cat  J  <->  ( S  C_  T  /\  A. x  e.  S  A. y  e.  S  ( x H y )  C_  ( x J y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2720   E.wrex 2721   _Vcvv 2977    C_ wss 3333   ~Pcpw 3865   <.cop 3888   class class class wbr 4297    X. cxp 4843   dom cdm 4845    Fn wfn 5418   ` cfv 5423  (class class class)co 6096   X_cixp 7268    C_cat cssc 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-ixp 7269  df-ssc 14728
This theorem is referenced by:  ssc1  14739  ssc2  14740  sscres  14741  ssctr  14743
  Copyright terms: Public domain W3C validator