MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isso2i Structured version   Visualization version   Unicode version

Theorem isso2i 4786
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
isso2i.1  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
isso2i.2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
Assertion
Ref Expression
isso2i  |-  R  Or  A
Distinct variable groups:    x, y,
z, R    x, A, y, z

Proof of Theorem isso2i
StepHypRef Expression
1 equid 1854 . . . . 5  |-  x  =  x
21orci 392 . . . 4  |-  ( x  =  x  \/  x R x )
3 eleq1 2516 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
43anbi2d 709 . . . . . 6  |-  ( y  =  x  ->  (
( x  e.  A  /\  y  e.  A
)  <->  ( x  e.  A  /\  x  e.  A ) ) )
5 equequ2 1867 . . . . . . . 8  |-  ( y  =  x  ->  (
x  =  y  <->  x  =  x ) )
6 breq1 4404 . . . . . . . 8  |-  ( y  =  x  ->  (
y R x  <->  x R x ) )
75, 6orbi12d 715 . . . . . . 7  |-  ( y  =  x  ->  (
( x  =  y  \/  y R x )  <->  ( x  =  x  \/  x R x ) ) )
8 breq2 4405 . . . . . . . 8  |-  ( y  =  x  ->  (
x R y  <->  x R x ) )
98notbid 296 . . . . . . 7  |-  ( y  =  x  ->  ( -.  x R y  <->  -.  x R x ) )
107, 9bibi12d 323 . . . . . 6  |-  ( y  =  x  ->  (
( ( x  =  y  \/  y R x )  <->  -.  x R y )  <->  ( (
x  =  x  \/  x R x )  <->  -.  x R x ) ) )
114, 10imbi12d 322 . . . . 5  |-  ( y  =  x  ->  (
( ( x  e.  A  /\  y  e.  A )  ->  (
( x  =  y  \/  y R x )  <->  -.  x R
y ) )  <->  ( (
x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) ) ) )
12 isso2i.1 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )
1312con2bid 331 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x  =  y  \/  y R x )  <->  -.  x R y ) )
1411, 13chvarv 2106 . . . 4  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( ( x  =  x  \/  x R x )  <->  -.  x R x ) )
152, 14mpbii 215 . . 3  |-  ( ( x  e.  A  /\  x  e.  A )  ->  -.  x R x )
1615anidms 650 . 2  |-  ( x  e.  A  ->  -.  x R x )
17 isso2i.2 . 2  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
1813biimprd 227 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( -.  x R y  ->  ( x  =  y  \/  y R x ) ) )
19 3orass 987 . . . 4  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( x R y  \/  ( x  =  y  \/  y R x ) ) )
20 df-or 372 . . . 4  |-  ( ( x R y  \/  ( x  =  y  \/  y R x ) )  <->  ( -.  x R y  ->  (
x  =  y  \/  y R x ) ) )
2119, 20bitri 253 . . 3  |-  ( ( x R y  \/  x  =  y  \/  y R x )  <-> 
( -.  x R y  ->  ( x  =  y  \/  y R x ) ) )
2218, 21sylibr 216 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  x  =  y  \/  y R x ) )
2316, 17, 22issoi 4785 1  |-  R  Or  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    \/ w3o 983    /\ w3a 984    e. wcel 1886   class class class wbr 4401    Or wor 4753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rab 2745  df-v 3046  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-sn 3968  df-pr 3970  df-op 3974  df-br 4402  df-po 4754  df-so 4755
This theorem is referenced by:  ltsonq  9391  ltsosr  9515  ltso  9711  xrltso  11437
  Copyright terms: Public domain W3C validator