MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isslw Structured version   Unicode version

Theorem isslw 16754
Description: The property of being a Sylow subgroup. A Sylow  P-subgroup is a  P-group which has no proper supersets that are also  P-groups. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
isslw  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
Distinct variable groups:    k, G    k, H    P, k

Proof of Theorem isslw
Dummy variables  g  h  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-slw 16682 . . 3  |- pSyl  =  ( p  e.  Prime ,  g  e.  Grp  |->  { h  e.  (SubGrp `  g )  |  A. k  e.  (SubGrp `  g ) ( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k ) } )
21elmpt2cl 6516 . 2  |-  ( H  e.  ( P pSyl  G
)  ->  ( P  e.  Prime  /\  G  e.  Grp ) )
3 simp1 996 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  P  e.  Prime )
4 subgrcl 16332 . . . 4  |-  ( H  e.  (SubGrp `  G
)  ->  G  e.  Grp )
543ad2ant2 1018 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  G  e.  Grp )
63, 5jca 532 . 2  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  ->  ( P  e.  Prime  /\  G  e.  Grp ) )
7 simpr 461 . . . . . . . . 9  |-  ( ( p  =  P  /\  g  =  G )  ->  g  =  G )
87fveq2d 5876 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  (SubGrp `  g )  =  (SubGrp `  G )
)
9 simpl 457 . . . . . . . . . . . 12  |-  ( ( p  =  P  /\  g  =  G )  ->  p  =  P )
107oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( p  =  P  /\  g  =  G )  ->  ( gs  k )  =  ( Gs  k ) )
119, 10breq12d 4469 . . . . . . . . . . 11  |-  ( ( p  =  P  /\  g  =  G )  ->  ( p pGrp  ( gs  k )  <->  P pGrp  ( Gs  k
) ) )
1211anbi2d 703 . . . . . . . . . 10  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <->  ( h  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
1312bibi1d 319 . . . . . . . . 9  |-  ( ( p  =  P  /\  g  =  G )  ->  ( ( ( h 
C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k )  <-> 
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k ) ) )
148, 13raleqbidv 3068 . . . . . . . 8  |-  ( ( p  =  P  /\  g  =  G )  ->  ( A. k  e.  (SubGrp `  g )
( ( h  C_  k  /\  p pGrp  ( gs  k ) )  <->  h  =  k )  <->  A. k  e.  (SubGrp `  G )
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k ) ) )
158, 14rabeqbidv 3104 . . . . . . 7  |-  ( ( p  =  P  /\  g  =  G )  ->  { h  e.  (SubGrp `  g )  |  A. k  e.  (SubGrp `  g
) ( ( h 
C_  k  /\  p pGrp  ( gs  k ) )  <-> 
h  =  k ) }  =  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } )
16 fvex 5882 . . . . . . . 8  |-  (SubGrp `  G )  e.  _V
1716rabex 4607 . . . . . . 7  |-  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) }  e.  _V
1815, 1, 17ovmpt2a 6432 . . . . . 6  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( P pSyl  G )  =  {
h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G
) ( ( h 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } )
1918eleq2d 2527 . . . . 5  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  H  e.  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) } ) )
20 sseq1 3520 . . . . . . . . 9  |-  ( h  =  H  ->  (
h  C_  k  <->  H  C_  k
) )
2120anbi1d 704 . . . . . . . 8  |-  ( h  =  H  ->  (
( h  C_  k  /\  P pGrp  ( Gs  k
) )  <->  ( H  C_  k  /\  P pGrp  ( Gs  k ) ) ) )
22 eqeq1 2461 . . . . . . . 8  |-  ( h  =  H  ->  (
h  =  k  <->  H  =  k ) )
2321, 22bibi12d 321 . . . . . . 7  |-  ( h  =  H  ->  (
( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <->  h  =  k )  <->  ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2423ralbidv 2896 . . . . . 6  |-  ( h  =  H  ->  ( A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k )  <->  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2524elrab 3257 . . . . 5  |-  ( H  e.  { h  e.  (SubGrp `  G )  |  A. k  e.  (SubGrp `  G ) ( ( h  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
h  =  k ) }  <->  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
2619, 25syl6bb 261 . . . 4  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
27 simpl 457 . . . . 5  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  P  e.  Prime )
2827biantrurd 508 . . . 4  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  (
( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) ) )
2926, 28bitrd 253 . . 3  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) ) )
30 3anass 977 . . 3  |-  ( ( P  e.  Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) )  <->  ( P  e. 
Prime  /\  ( H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G ) ( ( H  C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
3129, 30syl6bbr 263 . 2  |-  ( ( P  e.  Prime  /\  G  e.  Grp )  ->  ( H  e.  ( P pSyl  G )  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) ) )
322, 6, 31pm5.21nii 353 1  |-  ( H  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  H  e.  (SubGrp `  G )  /\  A. k  e.  (SubGrp `  G
) ( ( H 
C_  k  /\  P pGrp  ( Gs  k ) )  <-> 
H  =  k ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811    C_ wss 3471   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Primecprime 14228   ↾s cress 14644   Grpcgrp 16179  SubGrpcsubg 16321   pGrp cpgp 16677   pSyl cslw 16678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-subg 16324  df-slw 16682
This theorem is referenced by:  slwprm  16755  slwsubg  16756  slwispgp  16757  pgpssslw  16760  subgslw  16762  fislw  16771
  Copyright terms: Public domain W3C validator