HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh3 Structured version   Unicode version

Theorem issh3 26113
Description: Subspace  H of a Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
issh3  |-  ( H 
C_  ~H  ->  ( H  e.  SH  <->  ( 0h  e.  H  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) ) )
Distinct variable group:    x, y, H

Proof of Theorem issh3
StepHypRef Expression
1 issh2 26102 . 2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
2 anass 649 . . 3  |-  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) )  <-> 
( H  C_  ~H  /\  ( 0h  e.  H  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) ) ) )
32baib 903 . 2  |-  ( H 
C_  ~H  ->  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) )  <-> 
( 0h  e.  H  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) ) ) )
41, 3syl5bb 257 1  |-  ( H 
C_  ~H  ->  ( H  e.  SH  <->  ( 0h  e.  H  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1804   A.wral 2793    C_ wss 3461  (class class class)co 6281   CCcc 9493   ~Hchil 25812    +h cva 25813    .h csm 25814   0hc0v 25817   SHcsh 25821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-hilex 25892  ax-hfvadd 25893  ax-hfvmul 25898
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-fv 5586  df-ov 6284  df-sh 26100
This theorem is referenced by:  nlelshi  26955
  Copyright terms: Public domain W3C validator