HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh2 Structured version   Unicode version

Theorem issh2 24764
Description: Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Distinct variable group:    x, y, H

Proof of Theorem issh2
StepHypRef Expression
1 issh 24763 . 2  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  (
(  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
2 ax-hfvadd 24555 . . . . . . 7  |-  +h  :
( ~H  X.  ~H )
--> ~H
3 ffun 5670 . . . . . . 7  |-  (  +h  : ( ~H  X.  ~H ) --> ~H  ->  Fun  +h  )
42, 3ax-mp 5 . . . . . 6  |-  Fun  +h
5 xpss12 5054 . . . . . . . 8  |-  ( ( H  C_  ~H  /\  H  C_ 
~H )  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
65anidms 645 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  ( ~H  X.  ~H )
)
72fdmi 5673 . . . . . . 7  |-  dom  +h  =  ( ~H  X.  ~H )
86, 7syl6sseqr 3512 . . . . . 6  |-  ( H 
C_  ~H  ->  ( H  X.  H )  C_  dom  +h  )
9 funimassov 6351 . . . . . 6  |-  ( ( Fun  +h  /\  ( H  X.  H )  C_  dom  +h  )  ->  (
(  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
104, 8, 9sylancr 663 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  +h  " ( H  X.  H ) ) 
C_  H  <->  A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H
) )
11 ax-hfvmul 24560 . . . . . . 7  |-  .h  :
( CC  X.  ~H )
--> ~H
12 ffun 5670 . . . . . . 7  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  Fun  .h  )
1311, 12ax-mp 5 . . . . . 6  |-  Fun  .h
14 xpss2 5058 . . . . . . 7  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  ( CC  X.  ~H )
)
1511fdmi 5673 . . . . . . 7  |-  dom  .h  =  ( CC  X.  ~H )
1614, 15syl6sseqr 3512 . . . . . 6  |-  ( H 
C_  ~H  ->  ( CC 
X.  H )  C_  dom  .h  )
17 funimassov 6351 . . . . . 6  |-  ( ( Fun  .h  /\  ( CC  X.  H )  C_  dom  .h  )  ->  (
(  .h  " ( CC  X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1813, 16, 17sylancr 663 . . . . 5  |-  ( H 
C_  ~H  ->  ( (  .h  " ( CC 
X.  H ) ) 
C_  H  <->  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) )
1910, 18anbi12d 710 . . . 4  |-  ( H 
C_  ~H  ->  ( ( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2019adantr 465 . . 3  |-  ( ( H  C_  ~H  /\  0h  e.  H )  ->  (
( (  +h  " ( H  X.  H ) ) 
C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H )  <->  ( A. x  e.  H  A. y  e.  H  (
x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H
) ) )
2120pm5.32i 637 . 2  |-  ( ( ( H  C_  ~H  /\ 
0h  e.  H )  /\  ( (  +h  " ( H  X.  H ) )  C_  H  /\  (  .h  "
( CC  X.  H
) )  C_  H
) )  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
221, 21bitri 249 1  |-  ( H  e.  SH  <->  ( ( H  C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y
)  e.  H  /\  A. x  e.  CC  A. y  e.  H  (
x  .h  y )  e.  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    e. wcel 1758   A.wral 2799    C_ wss 3437    X. cxp 4947   dom cdm 4949   "cima 4952   Fun wfun 5521   -->wf 5523  (class class class)co 6201   CCcc 9392   ~Hchil 24474    +h cva 24475    .h csm 24476   0hc0v 24479   SHcsh 24483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640  ax-hilex 24554  ax-hfvadd 24555  ax-hfvmul 24560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-fv 5535  df-ov 6204  df-sh 24762
This theorem is referenced by:  shaddcl  24772  shmulcl  24773  shmulclOLD  24774  issh3  24775  helch  24799  hsn0elch  24804  hhshsslem2  24822  ocsh  24839  shscli  24873  shintcli  24885  imaelshi  25615
  Copyright terms: Public domain W3C validator