Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issgrpv Structured version   Unicode version

Theorem issgrpv 15891
 Description: The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
issgrpn0.b
issgrpn0.o
Assertion
Ref Expression
issgrpv SGrp
Distinct variable groups:   ,,,   ,,,   , ,,
Allowed substitution hints:   (,,)

Proof of Theorem issgrpv
StepHypRef Expression
1 issgrpn0.b . . . 4
2 issgrpn0.o . . . 4
31, 2ismgm 15851 . . 3 Mgm
43anbi1d 704 . 2 Mgm
51, 2issgrp 15890 . 2 SGrp Mgm
6 r19.26-2 2971 . 2
74, 5, 63bitr4g 288 1 SGrp
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1383   wcel 1804  wral 2793  cfv 5578  (class class class)co 6281  cbs 14613   cplusg 14678  Mgmcmgm 15848  SGrpcsgrp 15888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-nul 4566 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586  df-ov 6284  df-mgm 15850  df-sgrp 15889 This theorem is referenced by:  ismnd  15901
 Copyright terms: Public domain W3C validator