MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issect Structured version   Unicode version

Theorem issect 14711
Description: The property " F is a section of  G". (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b  |-  B  =  ( Base `  C
)
issect.h  |-  H  =  ( Hom  `  C
)
issect.o  |-  .x.  =  (comp `  C )
issect.i  |-  .1.  =  ( Id `  C )
issect.s  |-  S  =  (Sect `  C )
issect.c  |-  ( ph  ->  C  e.  Cat )
issect.x  |-  ( ph  ->  X  e.  B )
issect.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
issect  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G (
<. X ,  Y >.  .x. 
X ) F )  =  (  .1.  `  X ) ) ) )

Proof of Theorem issect
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . . 4  |-  B  =  ( Base `  C
)
2 issect.h . . . 4  |-  H  =  ( Hom  `  C
)
3 issect.o . . . 4  |-  .x.  =  (comp `  C )
4 issect.i . . . 4  |-  .1.  =  ( Id `  C )
5 issect.s . . . 4  |-  S  =  (Sect `  C )
6 issect.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 issect.x . . . 4  |-  ( ph  ->  X  e.  B )
8 issect.y . . . 4  |-  ( ph  ->  Y  e.  B )
91, 2, 3, 4, 5, 6, 7, 8sectfval 14709 . . 3  |-  ( ph  ->  ( X S Y )  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } )
109breqd 4322 . 2  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
F { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) } G ) )
11 oveq12 6119 . . . . . 6  |-  ( ( g  =  G  /\  f  =  F )  ->  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
1211ancoms 453 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
1312eqeq1d 2451 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( g (
<. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X )  <->  ( G
( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X ) ) )
14 eqid 2443 . . . 4  |-  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x.  X ) f )  =  (  .1.  `  X ) ) }
1513, 14brab2a 4907 . . 3  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) } G  <->  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X ) )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
) )
16 df-3an 967 . . 3  |-  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
)  <->  ( ( F  e.  ( X H Y )  /\  G  e.  ( Y H X ) )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X )
) )
1715, 16bitr4i 252 . 2  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( X H Y )  /\  g  e.  ( Y H X ) )  /\  ( g ( <. X ,  Y >.  .x. 
X ) f )  =  (  .1.  `  X ) ) } G  <->  ( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  (  .1.  `  X ) ) )
1810, 17syl6bb 261 1  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X H Y )  /\  G  e.  ( Y H X )  /\  ( G (
<. X ,  Y >.  .x. 
X ) F )  =  (  .1.  `  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   <.cop 3902   class class class wbr 4311   {copab 4368   ` cfv 5437  (class class class)co 6110   Basecbs 14193   Hom chom 14268  compcco 14269   Catccat 14621   Idccid 14622  Sectcsect 14702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-sect 14705
This theorem is referenced by:  issect2  14712  sectcan  14713  sectco  14714  oppcsect  14731  sectmon  14735  monsect  14736  funcsect  14801  fucsect  14901  invfuc  14903  setcsect  14976  catciso  14994
  Copyright terms: Public domain W3C validator