MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iss Structured version   Visualization version   Unicode version

Theorem iss 5155
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )

Proof of Theorem iss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3428 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  _I  ) )
2 vex 3050 . . . . . . . . 9  |-  x  e. 
_V
3 vex 3050 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 5041 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
54a1i 11 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A ) )
61, 5jcad 536 . . . . . 6  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  /\  x  e. 
dom  A ) ) )
7 df-br 4406 . . . . . . . . 9  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
83ideq 4990 . . . . . . . . 9  |-  ( x  _I  y  <->  x  =  y )
97, 8bitr3i 255 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
102eldm2 5036 . . . . . . . . . 10  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
11 opeq2 4170 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  <. x ,  x >.  =  <. x ,  y >. )
1211eleq1d 2515 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( <. x ,  x >.  e.  A  <->  <. x ,  y
>.  e.  A ) )
1312biimprcd 229 . . . . . . . . . . . . 13  |-  ( <.
x ,  y >.  e.  A  ->  ( x  =  y  ->  <. x ,  x >.  e.  A
) )
149, 13syl5bi 221 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  _I  ->  <. x ,  x >.  e.  A
) )
151, 14sylcom 30 . . . . . . . . . . 11  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  ->  <. x ,  x >.  e.  A
) )
1615exlimdv 1781 . . . . . . . . . 10  |-  ( A 
C_  _I  ->  ( E. y <. x ,  y
>.  e.  A  ->  <. x ,  x >.  e.  A
) )
1710, 16syl5bi 221 . . . . . . . . 9  |-  ( A 
C_  _I  ->  ( x  e.  dom  A  ->  <. x ,  x >.  e.  A ) )
1812imbi2d 318 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x  e.  dom  A  ->  <. x ,  x >.  e.  A )  <->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
1917, 18syl5ibcom 224 . . . . . . . 8  |-  ( A 
C_  _I  ->  ( x  =  y  ->  (
x  e.  dom  A  -> 
<. x ,  y >.  e.  A ) ) )
209, 19syl5bi 221 . . . . . . 7  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  _I  ->  ( x  e.  dom  A  ->  <. x ,  y >.  e.  A
) ) )
2120impd 433 . . . . . 6  |-  ( A 
C_  _I  ->  ( (
<. x ,  y >.  e.  _I  /\  x  e. 
dom  A )  ->  <. x ,  y >.  e.  A ) )
226, 21impbid 194 . . . . 5  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) ) )
233opelres 5113 . . . . 5  |-  ( <.
x ,  y >.  e.  (  _I  |`  dom  A
)  <->  ( <. x ,  y >.  e.  _I  /\  x  e.  dom  A ) )
2422, 23syl6bbr 267 . . . 4  |-  ( A 
C_  _I  ->  ( <.
x ,  y >.  e.  A  <->  <. x ,  y
>.  e.  (  _I  |`  dom  A
) ) )
2524alrimivv 1776 . . 3  |-  ( A 
C_  _I  ->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) )
26 reli 4965 . . . . 5  |-  Rel  _I
27 relss 4925 . . . . 5  |-  ( A 
C_  _I  ->  ( Rel 
_I  ->  Rel  A )
)
2826, 27mpi 20 . . . 4  |-  ( A 
C_  _I  ->  Rel  A
)
29 relres 5135 . . . 4  |-  Rel  (  _I  |`  dom  A )
30 eqrel 4927 . . . 4  |-  ( ( Rel  A  /\  Rel  (  _I  |`  dom  A
) )  ->  ( A  =  (  _I  |` 
dom  A )  <->  A. x A. y ( <. x ,  y >.  e.  A  <->  <.
x ,  y >.  e.  (  _I  |`  dom  A
) ) ) )
3128, 29, 30sylancl 669 . . 3  |-  ( A 
C_  _I  ->  ( A  =  (  _I  |`  dom  A
)  <->  A. x A. y
( <. x ,  y
>.  e.  A  <->  <. x ,  y >.  e.  (  _I  |`  dom  A ) ) ) )
3225, 31mpbird 236 . 2  |-  ( A 
C_  _I  ->  A  =  (  _I  |`  dom  A
) )
33 resss 5131 . . 3  |-  (  _I  |`  dom  A )  C_  _I
34 sseq1 3455 . . 3  |-  ( A  =  (  _I  |`  dom  A
)  ->  ( A  C_  _I  <->  (  _I  |`  dom  A
)  C_  _I  )
)
3533, 34mpbiri 237 . 2  |-  ( A  =  (  _I  |`  dom  A
)  ->  A  C_  _I  )
3632, 35impbii 191 1  |-  ( A 
C_  _I  <->  A  =  (  _I  |`  dom  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1444    = wceq 1446   E.wex 1665    e. wcel 1889    C_ wss 3406   <.cop 3976   class class class wbr 4405    _I cid 4747   dom cdm 4837    |` cres 4839   Rel wrel 4842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-br 4406  df-opab 4465  df-id 4752  df-xp 4843  df-rel 4844  df-dm 4847  df-res 4849
This theorem is referenced by:  funcocnv2  5843  trust  21256
  Copyright terms: Public domain W3C validator