Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsigaOLD Structured version   Unicode version

Theorem isrnsigaOLD 27738
Description: The property of being a sigma algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
isrnsigaOLD  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Distinct variable group:    x, o, S

Proof of Theorem isrnsigaOLD
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-siga 27734 . . 3  |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
2 df-rab 2816 . . . . 5  |-  { s  e.  ~P ~P o  |  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) }  =  { s  |  ( s  e.  ~P ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }
3 vex 3109 . . . . . . . 8  |-  s  e. 
_V
4 elpwg 4011 . . . . . . . 8  |-  ( s  e.  _V  ->  (
s  e.  ~P ~P o 
<->  s  C_  ~P o
) )
53, 4ax-mp 5 . . . . . . 7  |-  ( s  e.  ~P ~P o  <->  s 
C_  ~P o )
65anbi1i 695 . . . . . 6  |-  ( ( s  e.  ~P ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) )
76abbii 2594 . . . . 5  |-  { s  |  ( s  e. 
~P ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) ) }  =  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }
82, 7eqtr2i 2490 . . . 4  |-  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  =  { s  e.  ~P ~P o  |  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) }
9 grothpwex 9194 . . . . . 6  |-  ~P o  e.  _V
109pwex 4623 . . . . 5  |-  ~P ~P o  e.  _V
1110rabex 4591 . . . 4  |-  { s  e.  ~P ~P o  |  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) }  e.  _V
128, 11eqeltri 2544 . . 3  |-  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V
13 sseq1 3518 . . . 4  |-  ( s  =  S  ->  (
s  C_  ~P o  <->  S 
C_  ~P o ) )
14 eleq2 2533 . . . . 5  |-  ( s  =  S  ->  (
o  e.  s  <->  o  e.  S ) )
15 eleq2 2533 . . . . . 6  |-  ( s  =  S  ->  (
( o  \  x
)  e.  s  <->  ( o  \  x )  e.  S
) )
1615raleqbi1dv 3059 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  s 
( o  \  x
)  e.  s  <->  A. x  e.  S  ( o  \  x )  e.  S
) )
17 pweq 4006 . . . . . 6  |-  ( s  =  S  ->  ~P s  =  ~P S
)
18 biidd 237 . . . . . . 7  |-  ( s  =  S  ->  (
x  ~<_  om  <->  x  ~<_  om )
)
19 eleq2 2533 . . . . . . 7  |-  ( s  =  S  ->  ( U. x  e.  s  <->  U. x  e.  S ) )
2018, 19imbi12d 320 . . . . . 6  |-  ( s  =  S  ->  (
( x  ~<_  om  ->  U. x  e.  s )  <-> 
( x  ~<_  om  ->  U. x  e.  S ) ) )
2117, 20raleqbidv 3065 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  ~P  s ( x  ~<_  om 
->  U. x  e.  s )  <->  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )
2214, 16, 213anbi123d 1294 . . . 4  |-  ( s  =  S  ->  (
( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) )  <->  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
2313, 22anbi12d 710 . . 3  |-  ( s  =  S  ->  (
( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
241, 12, 23abfmpunirn 27148 . 2  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  (
o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
25 rexv 3121 . . 3  |-  ( E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) )  <->  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
2625anbi2i 694 . 2  |-  ( ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) )  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
2724, 26bitri 249 1  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374   E.wex 1591    e. wcel 1762   {cab 2445   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3106    \ cdif 3466    C_ wss 3469   ~Pcpw 4003   U.cuni 4238   class class class wbr 4440   ran crn 4993   omcom 6671    ~<_ cdom 7504  sigAlgebracsiga 27733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-groth 9190
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-fv 5587  df-siga 27734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator