Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsiga Structured version   Unicode version

Theorem isrnsiga 26687
Description: The property of being a sigma algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
isrnsiga  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Distinct variable group:    x, o, S

Proof of Theorem isrnsiga
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-siga 26682 . . 3  |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
2 sigaex 26683 . . 3  |-  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V
3 sseq1 3472 . . . 4  |-  ( s  =  S  ->  (
s  C_  ~P o  <->  S 
C_  ~P o ) )
4 eleq2 2522 . . . . 5  |-  ( s  =  S  ->  (
o  e.  s  <->  o  e.  S ) )
5 eleq2 2522 . . . . . 6  |-  ( s  =  S  ->  (
( o  \  x
)  e.  s  <->  ( o  \  x )  e.  S
) )
65raleqbi1dv 3018 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  s 
( o  \  x
)  e.  s  <->  A. x  e.  S  ( o  \  x )  e.  S
) )
7 pweq 3958 . . . . . 6  |-  ( s  =  S  ->  ~P s  =  ~P S
)
8 eleq2 2522 . . . . . . 7  |-  ( s  =  S  ->  ( U. x  e.  s  <->  U. x  e.  S ) )
98imbi2d 316 . . . . . 6  |-  ( s  =  S  ->  (
( x  ~<_  om  ->  U. x  e.  s )  <-> 
( x  ~<_  om  ->  U. x  e.  S ) ) )
107, 9raleqbidv 3024 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  ~P  s ( x  ~<_  om 
->  U. x  e.  s )  <->  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )
114, 6, 103anbi123d 1290 . . . 4  |-  ( s  =  S  ->  (
( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) )  <->  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
123, 11anbi12d 710 . . 3  |-  ( s  =  S  ->  (
( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
131, 2, 12abfmpunirn 26098 . 2  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  (
o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
14 rexv 3080 . . 3  |-  ( E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) )  <->  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
1514anbi2i 694 . 2  |-  ( ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) )  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
1613, 15bitri 249 1  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2793   E.wrex 2794   _Vcvv 3065    \ cdif 3420    C_ wss 3423   ~Pcpw 3955   U.cuni 4186   class class class wbr 4387   ran crn 4936   omcom 6573    ~<_ cdom 7405  sigAlgebracsiga 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-fv 5521  df-siga 26682
This theorem is referenced by:  0elsiga  26688  sigaclcu  26691  issgon  26697
  Copyright terms: Public domain W3C validator