Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnsiga Structured version   Unicode version

Theorem isrnsiga 27750
Description: The property of being a sigma algebra on an indefinite base set. (Contributed by Thierry Arnoux, 3-Sep-2016.) (Proof shortened by Thierry Arnoux, 23-Oct-2016.)
Assertion
Ref Expression
isrnsiga  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Distinct variable group:    x, o, S

Proof of Theorem isrnsiga
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 df-siga 27745 . . 3  |- sigAlgebra  =  ( o  e.  _V  |->  { s  |  ( s 
C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) } )
2 sigaex 27746 . . 3  |-  { s  |  ( s  C_  ~P o  /\  (
o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e.  ~P  s
( x  ~<_  om  ->  U. x  e.  s ) ) ) }  e.  _V
3 sseq1 3525 . . . 4  |-  ( s  =  S  ->  (
s  C_  ~P o  <->  S 
C_  ~P o ) )
4 eleq2 2540 . . . . 5  |-  ( s  =  S  ->  (
o  e.  s  <->  o  e.  S ) )
5 eleq2 2540 . . . . . 6  |-  ( s  =  S  ->  (
( o  \  x
)  e.  s  <->  ( o  \  x )  e.  S
) )
65raleqbi1dv 3066 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  s 
( o  \  x
)  e.  s  <->  A. x  e.  S  ( o  \  x )  e.  S
) )
7 pweq 4013 . . . . . 6  |-  ( s  =  S  ->  ~P s  =  ~P S
)
8 eleq2 2540 . . . . . . 7  |-  ( s  =  S  ->  ( U. x  e.  s  <->  U. x  e.  S ) )
98imbi2d 316 . . . . . 6  |-  ( s  =  S  ->  (
( x  ~<_  om  ->  U. x  e.  s )  <-> 
( x  ~<_  om  ->  U. x  e.  S ) ) )
107, 9raleqbidv 3072 . . . . 5  |-  ( s  =  S  ->  ( A. x  e.  ~P  s ( x  ~<_  om 
->  U. x  e.  s )  <->  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) )
114, 6, 103anbi123d 1299 . . . 4  |-  ( s  =  S  ->  (
( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) )  <->  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
123, 11anbi12d 710 . . 3  |-  ( s  =  S  ->  (
( s  C_  ~P o  /\  ( o  e.  s  /\  A. x  e.  s  ( o  \  x )  e.  s  /\  A. x  e. 
~P  s ( x  ~<_  om  ->  U. x  e.  s ) ) )  <-> 
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
131, 2, 12abfmpunirn 27159 . 2  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  (
o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) ) )
14 rexv 3128 . . 3  |-  ( E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) )  <->  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) )
1514anbi2i 694 . 2  |-  ( ( S  e.  _V  /\  E. o  e.  _V  ( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x
)  e.  S  /\  A. x  e.  ~P  S
( x  ~<_  om  ->  U. x  e.  S ) ) ) )  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
1613, 15bitri 249 1  |-  ( S  e.  U. ran sigAlgebra  <->  ( S  e.  _V  /\  E. o
( S  C_  ~P o  /\  ( o  e.  S  /\  A. x  e.  S  ( o  \  x )  e.  S  /\  A. x  e.  ~P  S ( x  ~<_  om 
->  U. x  e.  S
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447   ran crn 5000   omcom 6678    ~<_ cdom 7511  sigAlgebracsiga 27744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-fv 5594  df-siga 27745
This theorem is referenced by:  0elsiga  27751  sigaclcu  27754  issgon  27760
  Copyright terms: Public domain W3C validator