MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrngid Structured version   Unicode version

Theorem isrngid 16660
Description: Properties showing that an element  I is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
Hypotheses
Ref Expression
rngidm.b  |-  B  =  ( Base `  R
)
rngidm.t  |-  .x.  =  ( .r `  R )
rngidm.u  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
isrngid  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Distinct variable groups:    x, B    x, I    x, R    x,  .x.    x,  .1.

Proof of Theorem isrngid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 rngidm.b . . 3  |-  B  =  ( Base `  R
)
31, 2mgpbas 16587 . 2  |-  B  =  ( Base `  (mulGrp `  R ) )
4 rngidm.u . . 3  |-  .1.  =  ( 1r `  R )
51, 4rngidval 16595 . 2  |-  .1.  =  ( 0g `  (mulGrp `  R ) )
6 rngidm.t . . 3  |-  .x.  =  ( .r `  R )
71, 6mgpplusg 16585 . 2  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
82, 6rngideu 16652 . . 3  |-  ( R  e.  Ring  ->  E! y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
9 reurex 2935 . . 3  |-  ( E! y  e.  B  A. x  e.  B  (
( y  .x.  x
)  =  x  /\  ( x  .x.  y )  =  x )  ->  E. y  e.  B  A. x  e.  B  ( ( y  .x.  x )  =  x  /\  ( x  .x.  y )  =  x ) )
108, 9syl 16 . 2  |-  ( R  e.  Ring  ->  E. y  e.  B  A. x  e.  B  ( (
y  .x.  x )  =  x  /\  (
x  .x.  y )  =  x ) )
113, 5, 7, 10ismgmid 15431 1  |-  ( R  e.  Ring  ->  ( ( I  e.  B  /\  A. x  e.  B  ( ( I  .x.  x
)  =  x  /\  ( x  .x.  I )  =  x ) )  <-> 
.1.  =  I ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   E!wreu 2715   ` cfv 5415  (class class class)co 6090   Basecbs 14170   .rcmulr 14235  mulGrpcmgp 16581   1rcur 16593   Ringcrg 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-plusg 14247  df-0g 14376  df-mnd 15411  df-mgp 16582  df-ur 16594  df-rng 16637
This theorem is referenced by:  imasrng  16701  subrg1  16855  psr1  17462  cnfld1  17800  mat1  18293  erng1lem  34353  erngdvlem4-rN  34365
  Copyright terms: Public domain W3C validator