MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhmd Structured version   Unicode version

Theorem isrhmd 16945
Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
isrhmd.b  |-  B  =  ( Base `  R
)
isrhmd.o  |-  .1.  =  ( 1r `  R )
isrhmd.n  |-  N  =  ( 1r `  S
)
isrhmd.t  |-  .x.  =  ( .r `  R )
isrhmd.u  |-  .X.  =  ( .r `  S )
isrhmd.r  |-  ( ph  ->  R  e.  Ring )
isrhmd.s  |-  ( ph  ->  S  e.  Ring )
isrhmd.ho  |-  ( ph  ->  ( F `  .1.  )  =  N )
isrhmd.ht  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
isrhmd.c  |-  C  =  ( Base `  S
)
isrhmd.p  |-  .+  =  ( +g  `  R )
isrhmd.q  |-  .+^  =  ( +g  `  S )
isrhmd.f  |-  ( ph  ->  F : B --> C )
isrhmd.hp  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
Assertion
Ref Expression
isrhmd  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Distinct variable groups:    ph, x, y   
x, B, y    x, C, y    x, F, y   
x,  .+ , y    x,  .+^ , y    x, R, y    x, S, y
Allowed substitution hints:    .x. ( x, y)    .X. ( x, y)    .1. ( x, y)    N( x, y)

Proof of Theorem isrhmd
StepHypRef Expression
1 isrhmd.b . 2  |-  B  =  ( Base `  R
)
2 isrhmd.o . 2  |-  .1.  =  ( 1r `  R )
3 isrhmd.n . 2  |-  N  =  ( 1r `  S
)
4 isrhmd.t . 2  |-  .x.  =  ( .r `  R )
5 isrhmd.u . 2  |-  .X.  =  ( .r `  S )
6 isrhmd.r . 2  |-  ( ph  ->  R  e.  Ring )
7 isrhmd.s . 2  |-  ( ph  ->  S  e.  Ring )
8 isrhmd.ho . 2  |-  ( ph  ->  ( F `  .1.  )  =  N )
9 isrhmd.ht . 2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .x.  y )
)  =  ( ( F `  x ) 
.X.  ( F `  y ) ) )
10 isrhmd.c . . 3  |-  C  =  ( Base `  S
)
11 isrhmd.p . . 3  |-  .+  =  ( +g  `  R )
12 isrhmd.q . . 3  |-  .+^  =  ( +g  `  S )
13 rnggrp 16776 . . . 4  |-  ( R  e.  Ring  ->  R  e. 
Grp )
146, 13syl 16 . . 3  |-  ( ph  ->  R  e.  Grp )
15 rnggrp 16776 . . . 4  |-  ( S  e.  Ring  ->  S  e. 
Grp )
167, 15syl 16 . . 3  |-  ( ph  ->  S  e.  Grp )
17 isrhmd.f . . 3  |-  ( ph  ->  F : B --> C )
18 isrhmd.hp . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( F `  (
x  .+  y )
)  =  ( ( F `  x ) 
.+^  ( F `  y ) ) )
191, 10, 11, 12, 14, 16, 17, 18isghmd 15878 . 2  |-  ( ph  ->  F  e.  ( R 
GrpHom  S ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 19isrhm2d 16944 1  |-  ( ph  ->  F  e.  ( R RingHom  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   -->wf 5525   ` cfv 5529  (class class class)co 6203   Basecbs 14295   +g cplusg 14360   .rcmulr 14361   Grpcgrp 15532   1rcur 16728   Ringcrg 16771   RingHom crh 16930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-2 10494  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-plusg 14373  df-0g 14502  df-mhm 15586  df-ghm 15867  df-mgp 16717  df-ur 16729  df-rng 16773  df-rnghom 16932
This theorem is referenced by:  issrngd  17072  evlslem1  17728  qqhrhm  26583
  Copyright terms: Public domain W3C validator