MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrhm Structured version   Unicode version

Theorem isrhm 17565
Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
isrhm.m  |-  M  =  (mulGrp `  R )
isrhm.n  |-  N  =  (mulGrp `  S )
Assertion
Ref Expression
isrhm  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )

Proof of Theorem isrhm
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrhm2 17561 . . 3  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
21elmpt2cl 6490 . 2  |-  ( F  e.  ( R RingHom  S
)  ->  ( R  e.  Ring  /\  S  e.  Ring ) )
3 oveq12 6279 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  GrpHom  s )  =  ( R  GrpHom  S ) )
4 fveq2 5848 . . . . . . 7  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
5 fveq2 5848 . . . . . . 7  |-  ( s  =  S  ->  (mulGrp `  s )  =  (mulGrp `  S ) )
64, 5oveqan12d 6289 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
73, 6ineq12d 3687 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) )  =  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
8 ovex 6298 . . . . . 6  |-  ( R 
GrpHom  S )  e.  _V
98inex1 4578 . . . . 5  |-  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  e.  _V
107, 1, 9ovmpt2a 6406 . . . 4  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( R RingHom  S )  =  ( ( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) )
1110eleq2d 2524 . . 3  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  F  e.  (
( R  GrpHom  S )  i^i  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) ) ) ) )
12 elin 3673 . . . 4  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) ) )
13 isrhm.m . . . . . . . 8  |-  M  =  (mulGrp `  R )
14 isrhm.n . . . . . . . 8  |-  N  =  (mulGrp `  S )
1513, 14oveq12i 6282 . . . . . . 7  |-  ( M MndHom  N )  =  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )
1615eqcomi 2467 . . . . . 6  |-  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  =  ( M MndHom  N )
1716eleq2i 2532 . . . . 5  |-  ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S
) )  <->  F  e.  ( M MndHom  N ) )
1817anbi2i 692 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
1912, 18bitri 249 . . 3  |-  ( F  e.  ( ( R 
GrpHom  S )  i^i  (
(mulGrp `  R ) MndHom  (mulGrp `  S ) ) )  <-> 
( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) )
2011, 19syl6bb 261 . 2  |-  ( ( R  e.  Ring  /\  S  e.  Ring )  ->  ( F  e.  ( R RingHom  S )  <->  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
212, 20biadan2 640 1  |-  ( F  e.  ( R RingHom  S
)  <->  ( ( R  e.  Ring  /\  S  e. 
Ring )  /\  ( F  e.  ( R  GrpHom  S )  /\  F  e.  ( M MndHom  N ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    i^i cin 3460   ` cfv 5570  (class class class)co 6270   MndHom cmhm 16163    GrpHom cghm 16463  mulGrpcmgp 17336   Ringcrg 17393   RingHom crh 17556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-plusg 14797  df-0g 14931  df-mhm 16165  df-ghm 16464  df-mgp 17337  df-ur 17349  df-ring 17395  df-rnghom 17559
This theorem is referenced by:  rhmmhm  17566  rhmghm  17569  isrhm2d  17572  idrhm  17575  rhmf1o  17576  rhmco  17581  pwsco1rhm  17582  pwsco2rhm  17583  brric2  17589  resrhm  17653  pwsdiagrhm  17657  rhmpropd  17659  mat1rhm  19154  scmatrhm  19204  mat2pmatrhm  19402  m2cpmrhm  19414  pm2mprhm  19489  c0rhm  32972  rhmisrnghm  32980
  Copyright terms: Public domain W3C validator