MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg2 Structured version   Unicode version

Theorem isreg2 18993
Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Distinct variable groups:    o, c, p, x, J    X, c,
o, p, x

Proof of Theorem isreg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1r 1013 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  Reg )
2 simp2l 1014 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  c  e.  ( Clsd `  J ) )
3 simp2r 1015 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  X )
4 simp1l 1012 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  (TopOn `  X ) )
5 toponuni 18544 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
64, 5syl 16 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  X  =  U. J
)
73, 6eleqtrd 2519 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  U. J
)
8 simp3 990 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  -.  x  e.  c )
9 eqid 2443 . . . . . 6  |-  U. J  =  U. J
109regsep2 18992 . . . . 5  |-  ( ( J  e.  Reg  /\  ( c  e.  (
Clsd `  J )  /\  x  e.  U. J  /\  -.  x  e.  c ) )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )
111, 2, 7, 8, 10syl13anc 1220 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )
12113expia 1189 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X ) )  -> 
( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
1312ralrimivva 2820 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. c  e.  ( Clsd `  J
) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
14 topontop 18543 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1514adantr 465 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
165adantr 465 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  X  =  U. J )
1716difeq1d 3485 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  =  ( U. J  \ 
y ) )
189opncld 18649 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
1914, 18sylan 471 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( U. J  \  y
)  e.  ( Clsd `  J ) )
2017, 19eqeltrd 2517 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  e.  ( Clsd `  J
) )
21 eleq2 2504 . . . . . . . . . . . 12  |-  ( c  =  ( X  \ 
y )  ->  (
x  e.  c  <->  x  e.  ( X  \  y
) ) )
2221notbid 294 . . . . . . . . . . 11  |-  ( c  =  ( X  \ 
y )  ->  ( -.  x  e.  c  <->  -.  x  e.  ( X 
\  y ) ) )
23 eldif 3350 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  \ 
y )  <->  ( x  e.  X  /\  -.  x  e.  y ) )
2423baibr 897 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( -.  x  e.  y  <->  x  e.  ( X  \ 
y ) ) )
2524con1bid 330 . . . . . . . . . . 11  |-  ( x  e.  X  ->  ( -.  x  e.  ( X  \  y )  <->  x  e.  y ) )
2622, 25sylan9bb 699 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( -.  x  e.  c  <->  x  e.  y
) )
27 simpl 457 . . . . . . . . . . . . 13  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  c  =  ( X 
\  y ) )
2827sseq1d 3395 . . . . . . . . . . . 12  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( c  C_  o  <->  ( X  \  y ) 
C_  o ) )
29283anbi1d 1293 . . . . . . . . . . 11  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
30292rexbidv 2770 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
3126, 30imbi12d 320 . . . . . . . . 9  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )  <->  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3231ralbidva 2743 . . . . . . . 8  |-  ( c  =  ( X  \ 
y )  ->  ( A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3332rspcv 3081 . . . . . . 7  |-  ( ( X  \  y )  e.  ( Clsd `  J
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3420, 33syl 16 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
35 ralcom3 2898 . . . . . . 7  |-  ( A. x  e.  X  (
x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
36 toponss 18546 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
3736sselda 3368 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  x  e.  X )
38 simprr2 1037 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  x  e.  p )
395ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  X  =  U. J )
4039difeq1d 3485 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  =  ( U. J  \  o
) )
4114ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
42 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  o  e.  J )
439opncld 18649 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( U. J  \ 
o )  e.  (
Clsd `  J )
)
4441, 42, 43syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( U. J  \  o )  e.  ( Clsd `  J
) )
4540, 44eqeltrd 2517 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  e.  (
Clsd `  J )
)
46 incom 3555 . . . . . . . . . . . . . . . . . 18  |-  ( p  i^i  o )  =  ( o  i^i  p
)
47 simprr3 1038 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( o  i^i  p )  =  (/) )
4846, 47syl5eq 2487 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( p  i^i  o )  =  (/) )
49 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  (TopOn `  X ) )
50 simprlr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  e.  J )
51 toponss 18546 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  p  e.  J )  ->  p  C_  X )
5249, 50, 51syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  X
)
53 reldisj 3734 . . . . . . . . . . . . . . . . . 18  |-  ( p 
C_  X  ->  (
( p  i^i  o
)  =  (/)  <->  p  C_  ( X  \  o ) ) )
5452, 53syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( (
p  i^i  o )  =  (/)  <->  p  C_  ( X 
\  o ) ) )
5548, 54mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  ( X  \  o ) )
569clsss2 18688 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  \  o
)  e.  ( Clsd `  J )  /\  p  C_  ( X  \  o
) )  ->  (
( cls `  J
) `  p )  C_  ( X  \  o
) )
5745, 55, 56syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  ( X  \  o ) )
58 simprr1 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  y )  C_  o
)
59 difcom 3775 . . . . . . . . . . . . . . . 16  |-  ( ( X  \  y ) 
C_  o  <->  ( X  \  o )  C_  y
)
6058, 59sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  C_  y
)
6157, 60sstrd 3378 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  y
)
6238, 61jca 532 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
6362expr 615 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
o  e.  J  /\  p  e.  J )
)  ->  ( (
( X  \  y
)  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6463anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  y  e.  J )  /\  x  e.  y )  /\  o  e.  J )  /\  p  e.  J )  ->  (
( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6564reximdva 2840 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  o  e.  J )  ->  ( E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6665rexlimdva 2853 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  ( E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6737, 66embantd 54 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  (
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6867ralimdva 2806 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6935, 68syl5bi 217 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7034, 69syld 44 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7170ralrimdva 2818 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7271imp 429 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
73 isreg 18948 . . 3  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) ) )
7415, 72, 73sylanbrc 664 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Reg )
7513, 74impbida 828 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728    \ cdif 3337    i^i cin 3339    C_ wss 3340   (/)c0 3649   U.cuni 4103   ` cfv 5430   Topctop 18510  TopOnctopon 18511   Clsdccld 18632   clsccl 18634   Regcreg 18925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-top 18515  df-topon 18518  df-cld 18635  df-cls 18637  df-reg 18932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator