MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isreg2 Structured version   Unicode version

Theorem isreg2 19660
Description: A topological space is regular if any closed set is separated from any point not in it by neighborhoods. (Contributed by Jeff Hankins, 1-Feb-2010.) (Revised by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
isreg2  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Distinct variable groups:    o, c, p, x, J    X, c,
o, p, x

Proof of Theorem isreg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simp1r 1021 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  Reg )
2 simp2l 1022 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  c  e.  ( Clsd `  J ) )
3 simp2r 1023 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  X )
4 simp1l 1020 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  J  e.  (TopOn `  X ) )
5 toponuni 19211 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
64, 5syl 16 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  X  =  U. J
)
73, 6eleqtrd 2557 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  x  e.  U. J
)
8 simp3 998 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  -.  x  e.  c )
9 eqid 2467 . . . . . 6  |-  U. J  =  U. J
109regsep2 19659 . . . . 5  |-  ( ( J  e.  Reg  /\  ( c  e.  (
Clsd `  J )  /\  x  e.  U. J  /\  -.  x  e.  c ) )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )
111, 2, 7, 8, 10syl13anc 1230 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X )  /\  -.  x  e.  c )  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )
12113expia 1198 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
c  e.  ( Clsd `  J )  /\  x  e.  X ) )  -> 
( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
1312ralrimivva 2885 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. c  e.  ( Clsd `  J
) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) ) )
14 topontop 19210 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1514adantr 465 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
165adantr 465 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  X  =  U. J )
1716difeq1d 3621 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  =  ( U. J  \ 
y ) )
189opncld 19316 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  e.  J )  ->  ( U. J  \ 
y )  e.  (
Clsd `  J )
)
1914, 18sylan 471 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( U. J  \  y
)  e.  ( Clsd `  J ) )
2017, 19eqeltrd 2555 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( X  \  y )  e.  ( Clsd `  J
) )
21 eleq2 2540 . . . . . . . . . . . 12  |-  ( c  =  ( X  \ 
y )  ->  (
x  e.  c  <->  x  e.  ( X  \  y
) ) )
2221notbid 294 . . . . . . . . . . 11  |-  ( c  =  ( X  \ 
y )  ->  ( -.  x  e.  c  <->  -.  x  e.  ( X 
\  y ) ) )
23 eldif 3486 . . . . . . . . . . . . 13  |-  ( x  e.  ( X  \ 
y )  <->  ( x  e.  X  /\  -.  x  e.  y ) )
2423baibr 902 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( -.  x  e.  y  <->  x  e.  ( X  \ 
y ) ) )
2524con1bid 330 . . . . . . . . . . 11  |-  ( x  e.  X  ->  ( -.  x  e.  ( X  \  y )  <->  x  e.  y ) )
2622, 25sylan9bb 699 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( -.  x  e.  c  <->  x  e.  y
) )
27 simpl 457 . . . . . . . . . . . . 13  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  c  =  ( X 
\  y ) )
2827sseq1d 3531 . . . . . . . . . . . 12  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( c  C_  o  <->  ( X  \  y ) 
C_  o ) )
29283anbi1d 1303 . . . . . . . . . . 11  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
30292rexbidv 2980 . . . . . . . . . 10  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  <->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
3126, 30imbi12d 320 . . . . . . . . 9  |-  ( ( c  =  ( X 
\  y )  /\  x  e.  X )  ->  ( ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p )  =  (/) ) )  <->  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3231ralbidva 2900 . . . . . . . 8  |-  ( c  =  ( X  \ 
y )  ->  ( A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3332rspcv 3210 . . . . . . 7  |-  ( ( X  \  y )  e.  ( Clsd `  J
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
3420, 33syl 16 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
35 ralcom3 3027 . . . . . . 7  |-  ( A. x  e.  X  (
x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  <->  A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )
36 toponss 19213 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
3736sselda 3504 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  x  e.  X )
38 simprr2 1045 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  x  e.  p )
395ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  X  =  U. J )
4039difeq1d 3621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  =  ( U. J  \  o
) )
4114ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Top )
42 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  o  e.  J )
439opncld 19316 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( U. J  \ 
o )  e.  (
Clsd `  J )
)
4441, 42, 43syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( U. J  \  o )  e.  ( Clsd `  J
) )
4540, 44eqeltrd 2555 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  e.  (
Clsd `  J )
)
46 incom 3691 . . . . . . . . . . . . . . . . . 18  |-  ( p  i^i  o )  =  ( o  i^i  p
)
47 simprr3 1046 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( o  i^i  p )  =  (/) )
4846, 47syl5eq 2520 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( p  i^i  o )  =  (/) )
49 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  (TopOn `  X ) )
50 simprlr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  e.  J )
51 toponss 19213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  e.  (TopOn `  X )  /\  p  e.  J )  ->  p  C_  X )
5249, 50, 51syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  X
)
53 reldisj 3870 . . . . . . . . . . . . . . . . . 18  |-  ( p 
C_  X  ->  (
( p  i^i  o
)  =  (/)  <->  p  C_  ( X  \  o ) ) )
5452, 53syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( (
p  i^i  o )  =  (/)  <->  p  C_  ( X 
\  o ) ) )
5548, 54mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  p  C_  ( X  \  o ) )
569clsss2 19355 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  \  o
)  e.  ( Clsd `  J )  /\  p  C_  ( X  \  o
) )  ->  (
( cls `  J
) `  p )  C_  ( X  \  o
) )
5745, 55, 56syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  ( X  \  o ) )
58 simprr1 1044 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  y )  C_  o
)
59 difcom 3911 . . . . . . . . . . . . . . . 16  |-  ( ( X  \  y ) 
C_  o  <->  ( X  \  o )  C_  y
)
6058, 59sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( X  \  o )  C_  y
)
6157, 60sstrd 3514 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( ( cls `  J ) `  p )  C_  y
)
6238, 61jca 532 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
( o  e.  J  /\  p  e.  J
)  /\  ( ( X  \  y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
6362expr 615 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  (
o  e.  J  /\  p  e.  J )
)  ->  ( (
( X  \  y
)  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6463anassrs 648 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  y  e.  J )  /\  x  e.  y )  /\  o  e.  J )  /\  p  e.  J )  ->  (
( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  -> 
( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6564reximdva 2938 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J
)  /\  x  e.  y )  /\  o  e.  J )  ->  ( E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6665rexlimdva 2955 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  ( E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6737, 66embantd 54 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  /\  x  e.  y )  ->  (
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6867ralimdva 2872 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  y 
( x  e.  X  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
6935, 68syl5bi 217 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. x  e.  X  ( x  e.  y  ->  E. o  e.  J  E. p  e.  J  ( ( X  \ 
y )  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7034, 69syld 44 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7170ralrimdva 2882 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  ( ( cls `  J
) `  p )  C_  y ) ) )
7271imp 429 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) )
73 isreg 19615 . . 3  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. y  e.  J  A. x  e.  y  E. p  e.  J  ( x  e.  p  /\  (
( cls `  J
) `  p )  C_  y ) ) )
7415, 72, 73sylanbrc 664 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A. c  e.  ( Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  (
c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) )  ->  J  e.  Reg )
7513, 74impbida 830 1  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Reg  <->  A. c  e.  (
Clsd `  J ) A. x  e.  X  ( -.  x  e.  c  ->  E. o  e.  J  E. p  e.  J  ( c  C_  o  /\  x  e.  p  /\  ( o  i^i  p
)  =  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   U.cuni 4245   ` cfv 5587   Topctop 19177  TopOnctopon 19178   Clsdccld 19299   clsccl 19301   Regcreg 19592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-top 19182  df-topon 19185  df-cld 19302  df-cls 19304  df-reg 19599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator