MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isr0 Structured version   Unicode version

Theorem isr0 19989
Description: The property " J is an R0 space". A space is R0 if any two topologically distinguishable points are separated (there is an open set containing each one and disjoint from the other). Or in contraposition, if every open set which contains  x also contains  y, so there is no separation, then  x and  y are members of the same open sets. We have chosen not to give this definition a name, because it turns out that a space is R0 if and only if its Kolmogorov quotient is T1, so that is what we prove here. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
isr0  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Fre  <->  A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) ) )
Distinct variable groups:    w, o, x, y, z, J    o, F, w, z    o, X, w, x, y, z
Allowed substitution hints:    F( x, y)

Proof of Theorem isr0
Dummy variables  a 
b  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . . . 12  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqid 19980 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
32ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  F  e.  ( J  Cn  (KQ `  J ) ) )
4 cnima 19548 . . . . . . . . . 10  |-  ( ( F  e.  ( J  Cn  (KQ `  J
) )  /\  v  e.  (KQ `  J ) )  ->  ( `' F " v )  e.  J )
53, 4sylan 471 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( `' F " v )  e.  J )
6 eleq2 2540 . . . . . . . . . . 11  |-  ( o  =  ( `' F " v )  ->  (
z  e.  o  <->  z  e.  ( `' F " v ) ) )
7 eleq2 2540 . . . . . . . . . . 11  |-  ( o  =  ( `' F " v )  ->  (
w  e.  o  <->  w  e.  ( `' F " v ) ) )
86, 7imbi12d 320 . . . . . . . . . 10  |-  ( o  =  ( `' F " v )  ->  (
( z  e.  o  ->  w  e.  o )  <->  ( z  e.  ( `' F "
v )  ->  w  e.  ( `' F "
v ) ) ) )
98rspcv 3210 . . . . . . . . 9  |-  ( ( `' F " v )  e.  J  ->  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  ( z  e.  ( `' F "
v )  ->  w  e.  ( `' F "
v ) ) ) )
105, 9syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( A. o  e.  J  (
z  e.  o  ->  w  e.  o )  ->  ( z  e.  ( `' F " v )  ->  w  e.  ( `' F " v ) ) ) )
111kqffn 19977 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
1211ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  F  Fn  X )
1312adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  F  Fn  X )
14 fnfun 5677 . . . . . . . . . . 11  |-  ( F  Fn  X  ->  Fun  F )
1513, 14syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  Fun  F )
16 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
z  e.  X )
1716adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  z  e.  X )
18 fndm 5679 . . . . . . . . . . . 12  |-  ( F  Fn  X  ->  dom  F  =  X )
1913, 18syl 16 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  dom  F  =  X )
2017, 19eleqtrrd 2558 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  z  e.  dom  F )
21 fvimacnv 5995 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( ( F `  z )  e.  v  <-> 
z  e.  ( `' F " v ) ) )
2215, 20, 21syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( ( F `  z )  e.  v  <->  z  e.  ( `' F " v ) ) )
23 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  w  e.  X )
2423adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  w  e.  X )
2524, 19eleqtrrd 2558 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  w  e.  dom  F )
26 fvimacnv 5995 . . . . . . . . . 10  |-  ( ( Fun  F  /\  w  e.  dom  F )  -> 
( ( F `  w )  e.  v  <-> 
w  e.  ( `' F " v ) ) )
2715, 25, 26syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( ( F `  w )  e.  v  <->  w  e.  ( `' F " v ) ) )
2822, 27imbi12d 320 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( (
( F `  z
)  e.  v  -> 
( F `  w
)  e.  v )  <-> 
( z  e.  ( `' F " v )  ->  w  e.  ( `' F " v ) ) ) )
2910, 28sylibrd 234 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  v  e.  (KQ `  J ) )  ->  ( A. o  e.  J  (
z  e.  o  ->  w  e.  o )  ->  ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v ) ) )
3029ralrimdva 2882 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v ) ) )
31 simplr 754 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
(KQ `  J )  e.  Fre )
32 fnfvelrn 6017 . . . . . . . . 9  |-  ( ( F  Fn  X  /\  z  e.  X )  ->  ( F `  z
)  e.  ran  F
)
3312, 16, 32syl2anc 661 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  z
)  e.  ran  F
)
341kqtopon 19979 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
3534ad2antrr 725 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
(KQ `  J )  e.  (TopOn `  ran  F ) )
36 toponuni 19211 . . . . . . . . 9  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ran  F  =  U. (KQ `  J ) )
3735, 36syl 16 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  ->  ran  F  =  U. (KQ `  J ) )
3833, 37eleqtrd 2557 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  z
)  e.  U. (KQ `  J ) )
39 fnfvelrn 6017 . . . . . . . . 9  |-  ( ( F  Fn  X  /\  w  e.  X )  ->  ( F `  w
)  e.  ran  F
)
4012, 23, 39syl2anc 661 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  w
)  e.  ran  F
)
4140, 37eleqtrd 2557 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( F `  w
)  e.  U. (KQ `  J ) )
42 eqid 2467 . . . . . . . 8  |-  U. (KQ `  J )  =  U. (KQ `  J )
4342t1sep2 19652 . . . . . . 7  |-  ( ( (KQ `  J )  e.  Fre  /\  ( F `  z )  e.  U. (KQ `  J
)  /\  ( F `  w )  e.  U. (KQ `  J ) )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) )
4431, 38, 41, 43syl3anc 1228 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) )
4530, 44syld 44 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  ( F `  z )  =  ( F `  w ) ) )
461kqfeq 19976 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) ) )
47 eleq2 2540 . . . . . . . . . 10  |-  ( o  =  y  ->  (
z  e.  o  <->  z  e.  y ) )
48 eleq2 2540 . . . . . . . . . 10  |-  ( o  =  y  ->  (
w  e.  o  <->  w  e.  y ) )
4947, 48bibi12d 321 . . . . . . . . 9  |-  ( o  =  y  ->  (
( z  e.  o  <-> 
w  e.  o )  <-> 
( z  e.  y  <-> 
w  e.  y ) ) )
5049cbvralv 3088 . . . . . . . 8  |-  ( A. o  e.  J  (
z  e.  o  <->  w  e.  o )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) )
5146, 50syl6bbr 263 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) )
52513expb 1197 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) )
5352adantlr 714 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( ( F `  z )  =  ( F `  w )  <->  A. o  e.  J  ( z  e.  o  <-> 
w  e.  o ) ) )
5445, 53sylibd 214 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  /\  ( z  e.  X  /\  w  e.  X ) )  -> 
( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) )
5554ralrimivva 2885 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (KQ `  J )  e.  Fre )  ->  A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) )
5655ex 434 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Fre  ->  A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) ) )
57 simpll 753 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  J  e.  (TopOn `  X )
)
581kqopn 19986 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  ->  ( F " o )  e.  (KQ `  J ) )
5957, 58sylan 471 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  ( F " o )  e.  (KQ `  J ) )
60 eleq2 2540 . . . . . . . . . . . 12  |-  ( v  =  ( F "
o )  ->  (
( F `  z
)  e.  v  <->  ( F `  z )  e.  ( F " o ) ) )
61 eleq2 2540 . . . . . . . . . . . 12  |-  ( v  =  ( F "
o )  ->  (
( F `  w
)  e.  v  <->  ( F `  w )  e.  ( F " o ) ) )
6260, 61imbi12d 320 . . . . . . . . . . 11  |-  ( v  =  ( F "
o )  ->  (
( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  <->  ( ( F `
 z )  e.  ( F " o
)  ->  ( F `  w )  e.  ( F " o ) ) ) )
6362rspcv 3210 . . . . . . . . . 10  |-  ( ( F " o )  e.  (KQ `  J
)  ->  ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( ( F `  z )  e.  ( F " o
)  ->  ( F `  w )  e.  ( F " o ) ) ) )
6459, 63syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  (
( F `  z
)  e.  ( F
" o )  -> 
( F `  w
)  e.  ( F
" o ) ) ) )
651kqfvima 19982 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J  /\  z  e.  X )  ->  (
z  e.  o  <->  ( F `  z )  e.  ( F " o ) ) )
66653expa 1196 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  /\  z  e.  X )  ->  (
z  e.  o  <->  ( F `  z )  e.  ( F " o ) ) )
6766an32s 802 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  o  e.  J )  ->  (
z  e.  o  <->  ( F `  z )  e.  ( F " o ) ) )
6867adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  (
z  e.  o  <->  ( F `  z )  e.  ( F " o ) ) )
691kqfvima 19982 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J  /\  w  e.  X )  ->  (
w  e.  o  <->  ( F `  w )  e.  ( F " o ) ) )
70693expa 1196 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  /\  w  e.  X )  ->  (
w  e.  o  <->  ( F `  w )  e.  ( F " o ) ) )
7170an32s 802 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  w  e.  X )  /\  o  e.  J )  ->  (
w  e.  o  <->  ( F `  w )  e.  ( F " o ) ) )
7271adantllr 718 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  (
w  e.  o  <->  ( F `  w )  e.  ( F " o ) ) )
7368, 72imbi12d 320 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  (
( z  e.  o  ->  w  e.  o )  <->  ( ( F `
 z )  e.  ( F " o
)  ->  ( F `  w )  e.  ( F " o ) ) ) )
7464, 73sylibrd 234 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X
)  /\  w  e.  X )  /\  o  e.  J )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  (
z  e.  o  ->  w  e.  o )
) )
7574ralrimdva 2882 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  A. o  e.  J  ( z  e.  o  ->  w  e.  o ) ) )
761kqfval 19975 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  ->  ( F `  z )  =  { y  e.  J  |  z  e.  y } )
7776adantr 465 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  ( F `  z )  =  { y  e.  J  |  z  e.  y } )
781kqfval 19975 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  w  e.  X )  ->  ( F `  w )  =  { y  e.  J  |  w  e.  y } )
7978adantlr 714 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  ( F `  w )  =  { y  e.  J  |  w  e.  y } )
8077, 79eqeq12d 2489 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  { y  e.  J  |  z  e.  y }  =  {
y  e.  J  |  w  e.  y }
) )
81 rabbi 3040 . . . . . . . . . 10  |-  ( A. y  e.  J  (
z  e.  y  <->  w  e.  y )  <->  { y  e.  J  |  z  e.  y }  =  {
y  e.  J  |  w  e.  y }
)
8250, 81bitri 249 . . . . . . . . 9  |-  ( A. o  e.  J  (
z  e.  o  <->  w  e.  o )  <->  { y  e.  J  |  z  e.  y }  =  {
y  e.  J  |  w  e.  y }
)
8380, 82syl6bbr 263 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) )
8483biimprd 223 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  ( A. o  e.  J  ( z  e.  o  <-> 
w  e.  o )  ->  ( F `  z )  =  ( F `  w ) ) )
8575, 84imim12d 74 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  /\  w  e.  X )  ->  (
( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
8685ralimdva 2872 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X )  ->  ( A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) )  ->  A. w  e.  X  ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
8786ralimdva 2872 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) )  ->  A. z  e.  X  A. w  e.  X  ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
88 eleq1 2539 . . . . . . . . . . 11  |-  ( a  =  ( F `  z )  ->  (
a  e.  v  <->  ( F `  z )  e.  v ) )
8988imbi1d 317 . . . . . . . . . 10  |-  ( a  =  ( F `  z )  ->  (
( a  e.  v  ->  b  e.  v )  <->  ( ( F `
 z )  e.  v  ->  b  e.  v ) ) )
9089ralbidv 2903 . . . . . . . . 9  |-  ( a  =  ( F `  z )  ->  ( A. v  e.  (KQ `  J ) ( a  e.  v  ->  b  e.  v )  <->  A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  b  e.  v ) ) )
91 eqeq1 2471 . . . . . . . . 9  |-  ( a  =  ( F `  z )  ->  (
a  =  b  <->  ( F `  z )  =  b ) )
9290, 91imbi12d 320 . . . . . . . 8  |-  ( a  =  ( F `  z )  ->  (
( A. v  e.  (KQ `  J ) ( a  e.  v  ->  b  e.  v )  ->  a  =  b )  <->  ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b ) ) )
9392ralbidv 2903 . . . . . . 7  |-  ( a  =  ( F `  z )  ->  ( A. b  e.  ran  F ( A. v  e.  (KQ `  J ) ( a  e.  v  ->  b  e.  v )  ->  a  =  b )  <->  A. b  e.  ran  F ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b ) ) )
9493ralrn 6023 . . . . . 6  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ `  J ) ( a  e.  v  ->  b  e.  v )  ->  a  =  b )  <->  A. z  e.  X  A. b  e.  ran  F ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b ) ) )
95 eleq1 2539 . . . . . . . . . . 11  |-  ( b  =  ( F `  w )  ->  (
b  e.  v  <->  ( F `  w )  e.  v ) )
9695imbi2d 316 . . . . . . . . . 10  |-  ( b  =  ( F `  w )  ->  (
( ( F `  z )  e.  v  ->  b  e.  v )  <->  ( ( F `
 z )  e.  v  ->  ( F `  w )  e.  v ) ) )
9796ralbidv 2903 . . . . . . . . 9  |-  ( b  =  ( F `  w )  ->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  b  e.  v )  <->  A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v ) ) )
98 eqeq2 2482 . . . . . . . . 9  |-  ( b  =  ( F `  w )  ->  (
( F `  z
)  =  b  <->  ( F `  z )  =  ( F `  w ) ) )
9997, 98imbi12d 320 . . . . . . . 8  |-  ( b  =  ( F `  w )  ->  (
( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b )  <->  ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
10099ralrn 6023 . . . . . . 7  |-  ( F  Fn  X  ->  ( A. b  e.  ran  F ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b )  <->  A. w  e.  X  ( A. v  e.  (KQ
`  J ) ( ( F `  z
)  e.  v  -> 
( F `  w
)  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
101100ralbidv 2903 . . . . . 6  |-  ( F  Fn  X  ->  ( A. z  e.  X  A. b  e.  ran  F ( A. v  e.  (KQ `  J ) ( ( F `  z )  e.  v  ->  b  e.  v )  ->  ( F `  z )  =  b )  <->  A. z  e.  X  A. w  e.  X  ( A. v  e.  (KQ
`  J ) ( ( F `  z
)  e.  v  -> 
( F `  w
)  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
10294, 101bitrd 253 . . . . 5  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ `  J ) ( a  e.  v  ->  b  e.  v )  ->  a  =  b )  <->  A. z  e.  X  A. w  e.  X  ( A. v  e.  (KQ `  J
) ( ( F `
 z )  e.  v  ->  ( F `  w )  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
10311, 102syl 16 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ
`  J ) ( a  e.  v  -> 
b  e.  v )  ->  a  =  b )  <->  A. z  e.  X  A. w  e.  X  ( A. v  e.  (KQ
`  J ) ( ( F `  z
)  e.  v  -> 
( F `  w
)  e.  v )  ->  ( F `  z )  =  ( F `  w ) ) ) )
10487, 103sylibrd 234 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) )  ->  A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ `  J
) ( a  e.  v  ->  b  e.  v )  ->  a  =  b ) ) )
105 ist1-2 19630 . . . 4  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ( (KQ `  J )  e.  Fre  <->  A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ
`  J ) ( a  e.  v  -> 
b  e.  v )  ->  a  =  b ) ) )
10634, 105syl 16 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Fre  <->  A. a  e.  ran  F A. b  e.  ran  F ( A. v  e.  (KQ
`  J ) ( a  e.  v  -> 
b  e.  v )  ->  a  =  b ) ) )
107104, 106sylibrd 234 . 2  |-  ( J  e.  (TopOn `  X
)  ->  ( A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) )  ->  (KQ `  J )  e.  Fre ) )
10856, 107impbid 191 1  |-  ( J  e.  (TopOn `  X
)  ->  ( (KQ `  J )  e.  Fre  <->  A. z  e.  X  A. w  e.  X  ( A. o  e.  J  ( z  e.  o  ->  w  e.  o )  ->  A. o  e.  J  ( z  e.  o  <->  w  e.  o
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818   U.cuni 4245    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   Fun wfun 5581    Fn wfn 5582   ` cfv 5587  (class class class)co 6283  TopOnctopon 19178    Cn ccn 19507   Frect1 19590  KQckq 19945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-map 7422  df-topgen 14698  df-qtop 14761  df-top 19182  df-topon 19185  df-cld 19302  df-cn 19510  df-t1 19597  df-kq 19946
This theorem is referenced by:  r0sep  20000
  Copyright terms: Public domain W3C validator