MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isptfin Structured version   Visualization version   Unicode version

Theorem isptfin 20543
Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
isptfin.1  |-  X  = 
U. A
Assertion
Ref Expression
isptfin  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Distinct variable groups:    x, y, A    x, X
Allowed substitution hints:    B( x, y)    X( y)

Proof of Theorem isptfin
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 unieq 4209 . . . 4  |-  ( a  =  A  ->  U. a  =  U. A )
2 isptfin.1 . . . 4  |-  X  = 
U. A
31, 2syl6eqr 2505 . . 3  |-  ( a  =  A  ->  U. a  =  X )
4 rabeq 3040 . . . 4  |-  ( a  =  A  ->  { y  e.  a  |  x  e.  y }  =  { y  e.  A  |  x  e.  y } )
54eleq1d 2515 . . 3  |-  ( a  =  A  ->  ( { y  e.  a  |  x  e.  y }  e.  Fin  <->  { y  e.  A  |  x  e.  y }  e.  Fin ) )
63, 5raleqbidv 3003 . 2  |-  ( a  =  A  ->  ( A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
7 df-ptfin 20533 . 2  |-  PtFin  =  {
a  |  A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin }
86, 7elab2g 3189 1  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    = wceq 1446    e. wcel 1889   A.wral 2739   {crab 2743   U.cuni 4201   Fincfn 7574   PtFincptfin 20530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-uni 4202  df-ptfin 20533
This theorem is referenced by:  finptfin  20545  ptfinfin  20546  lfinpfin  20551
  Copyright terms: Public domain W3C validator