Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isptfin Structured version   Unicode version

Theorem isptfin 28593
Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
isptfin.1  |-  X  = 
U. A
Assertion
Ref Expression
isptfin  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Distinct variable groups:    x, y, A    x, X
Allowed substitution hints:    B( x, y)    X( y)

Proof of Theorem isptfin
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 unieq 4120 . . . 4  |-  ( a  =  A  ->  U. a  =  U. A )
2 isptfin.1 . . . 4  |-  X  = 
U. A
31, 2syl6eqr 2493 . . 3  |-  ( a  =  A  ->  U. a  =  X )
4 rabeq 2987 . . . 4  |-  ( a  =  A  ->  { y  e.  a  |  x  e.  y }  =  { y  e.  A  |  x  e.  y } )
54eleq1d 2509 . . 3  |-  ( a  =  A  ->  ( { y  e.  a  |  x  e.  y }  e.  Fin  <->  { y  e.  A  |  x  e.  y }  e.  Fin ) )
63, 5raleqbidv 2952 . 2  |-  ( a  =  A  ->  ( A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
7 df-ptfin 28563 . 2  |-  PtFin  =  {
a  |  A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin }
86, 7elab2g 3129 1  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756   A.wral 2736   {crab 2740   U.cuni 4112   Fincfn 7331   PtFincptfin 28559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-uni 4113  df-ptfin 28563
This theorem is referenced by:  finptfin  28595  ptfinfin  28596  lfinpfin  28601
  Copyright terms: Public domain W3C validator