Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Unicode version

Theorem ispsubsp2 34560
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l  |-  .<_  =  ( le `  K )
psubspset.j  |-  .\/  =  ( join `  K )
psubspset.a  |-  A  =  ( Atoms `  K )
psubspset.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
ispsubsp2  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
Distinct variable groups:    A, r    q, p, r, K    X, p, q, r    A, p, q
Allowed substitution hints:    D( r, q, p)    S( r, q, p)    .\/ ( r, q, p)    .<_ ( r, q, p)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3  |-  .<_  =  ( le `  K )
2 psubspset.j . . 3  |-  .\/  =  ( join `  K )
3 psubspset.a . . 3  |-  A  =  ( Atoms `  K )
4 psubspset.s . . 3  |-  S  =  ( PSubSp `  K )
51, 2, 3, 4ispsubsp 34559 . 2  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
6 ralcom 3022 . . . . . . 7  |-  ( A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  A. r  e.  X  ( p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
7 r19.23v 2943 . . . . . . . 8  |-  ( A. r  e.  X  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
87ralbii 2895 . . . . . . 7  |-  ( A. p  e.  A  A. r  e.  X  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
96, 8bitri 249 . . . . . 6  |-  ( A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
109ralbii 2895 . . . . 5  |-  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
11 ralcom 3022 . . . . . 6  |-  ( A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
12 r19.23v 2943 . . . . . . 7  |-  ( A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1312ralbii 2895 . . . . . 6  |-  ( A. p  e.  A  A. q  e.  X  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1411, 13bitri 249 . . . . 5  |-  ( A. q  e.  X  A. p  e.  A  ( E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1510, 14bitri 249 . . . 4  |-  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  (
p  .<_  ( q  .\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) )
1615a1i 11 . . 3  |-  ( K  e.  D  ->  ( A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q 
.\/  r )  ->  p  e.  X )  <->  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X ) ) )
1716anbi2d 703 . 2  |-  ( K  e.  D  ->  (
( X  C_  A  /\  A. q  e.  X  A. r  e.  X  A. p  e.  A  ( p  .<_  ( q 
.\/  r )  ->  p  e.  X )
)  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r )  ->  p  e.  X
) ) ) )
185, 17bitrd 253 1  |-  ( K  e.  D  ->  ( X  e.  S  <->  ( X  C_  A  /\  A. p  e.  A  ( E. q  e.  X  E. r  e.  X  p  .<_  ( q  .\/  r
)  ->  p  e.  X ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   lecple 14562   joincjn 15431   Atomscatm 34078   PSubSpcpsubsp 34310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-ov 6287  df-psubsp 34317
This theorem is referenced by:  psubspi  34561  paddclN  34656
  Copyright terms: Public domain W3C validator