MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispsmet Structured version   Unicode version

Theorem ispsmet 20676
Description: Express the predicate " D is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
ispsmet  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y,
z, X    x, D, y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem ispsmet
Dummy variables  u  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3127 . . . . 5  |-  ( X  e.  V  ->  X  e.  _V )
2 id 22 . . . . . . . . 9  |-  ( u  =  X  ->  u  =  X )
32, 2xpeq12d 5030 . . . . . . . 8  |-  ( u  =  X  ->  (
u  X.  u )  =  ( X  X.  X ) )
43oveq2d 6311 . . . . . . 7  |-  ( u  =  X  ->  ( RR*  ^m  ( u  X.  u ) )  =  ( RR*  ^m  ( X  X.  X ) ) )
5 raleq 3063 . . . . . . . . . 10  |-  ( u  =  X  ->  ( A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
65raleqbi1dv 3071 . . . . . . . . 9  |-  ( u  =  X  ->  ( A. y  e.  u  A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) )
76anbi2d 703 . . . . . . . 8  |-  ( u  =  X  ->  (
( ( x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  ( (
x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
87raleqbi1dv 3071 . . . . . . 7  |-  ( u  =  X  ->  ( A. x  e.  u  ( ( x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  A. x  e.  X  ( (
x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) ) )
94, 8rabeqbidv 3113 . . . . . 6  |-  ( u  =  X  ->  { d  e.  ( RR*  ^m  (
u  X.  u ) )  |  A. x  e.  u  ( (
x d x )  =  0  /\  A. y  e.  u  A. z  e.  u  (
x d y )  <_  ( ( z d x ) +e ( z d y ) ) ) }  =  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) } )
10 df-psmet 18281 . . . . . 6  |- PsMet  =  ( u  e.  _V  |->  { d  e.  ( RR*  ^m  ( u  X.  u
) )  |  A. x  e.  u  (
( x d x )  =  0  /\ 
A. y  e.  u  A. z  e.  u  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) } )
11 ovex 6320 . . . . . . 7  |-  ( RR*  ^m  ( X  X.  X
) )  e.  _V
1211rabex 4604 . . . . . 6  |-  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) }  e.  _V
139, 10, 12fvmpt 5957 . . . . 5  |-  ( X  e.  _V  ->  (PsMet `  X )  =  {
d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  (
( x d x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) } )
141, 13syl 16 . . . 4  |-  ( X  e.  V  ->  (PsMet `  X )  =  {
d  e.  ( RR*  ^m  ( X  X.  X
) )  |  A. x  e.  X  (
( x d x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) ) ) } )
1514eleq2d 2537 . . 3  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) } ) )
16 oveq 6301 . . . . . . 7  |-  ( d  =  D  ->  (
x d x )  =  ( x D x ) )
1716eqeq1d 2469 . . . . . 6  |-  ( d  =  D  ->  (
( x d x )  =  0  <->  (
x D x )  =  0 ) )
18 oveq 6301 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
19 oveq 6301 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
20 oveq 6301 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2119, 20oveq12d 6313 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x ) +e ( z d y ) )  =  ( ( z D x ) +e ( z D y ) ) )
2218, 21breq12d 4466 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <-> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
23222ralbidv 2911 . . . . . 6  |-  ( d  =  D  ->  ( A. y  e.  X  A. z  e.  X  ( x d y )  <_  ( (
z d x ) +e ( z d y ) )  <->  A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
2417, 23anbi12d 710 . . . . 5  |-  ( d  =  D  ->  (
( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
2524ralbidv 2906 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x d y )  <_  (
( z d x ) +e ( z d y ) ) )  <->  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) )
2625elrab 3266 . . 3  |-  ( D  e.  { d  e.  ( RR*  ^m  ( X  X.  X ) )  |  A. x  e.  X  ( ( x d x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x
d y )  <_ 
( ( z d x ) +e
( z d y ) ) ) }  <-> 
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) )
2715, 26syl6bb 261 . 2  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D  e.  ( RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) ) ) )
28 xrex 11229 . . . 4  |-  RR*  e.  _V
29 xpexg 6597 . . . . 5  |-  ( ( X  e.  V  /\  X  e.  V )  ->  ( X  X.  X
)  e.  _V )
3029anidms 645 . . . 4  |-  ( X  e.  V  ->  ( X  X.  X )  e. 
_V )
31 elmapg 7445 . . . 4  |-  ( (
RR*  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3228, 30, 31sylancr 663 . . 3  |-  ( X  e.  V  ->  ( D  e.  ( RR*  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR* ) )
3332anbi1d 704 . 2  |-  ( X  e.  V  ->  (
( D  e.  (
RR*  ^m  ( X  X.  X ) )  /\  A. x  e.  X  ( ( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  (
( x D x )  =  0  /\ 
A. y  e.  X  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) ) )
3427, 33bitrd 253 1  |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  ( (
x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  (
x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   _Vcvv 3118   class class class wbr 4453    X. cxp 5003   -->wf 5590   ` cfv 5594  (class class class)co 6295    ^m cmap 7432   0cc0 9504   RR*cxr 9639    <_ cle 9641   +ecxad 11328  PsMetcpsmet 18272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-map 7434  df-xr 9644  df-psmet 18281
This theorem is referenced by:  psmetdmdm  20677  psmetf  20678  psmet0  20680  psmettri2  20681  psmetres2  20686  xmetpsmet  20719
  Copyright terms: Public domain W3C validator