MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Visualization version   Unicode version

Theorem isprm6 14714
Description: A number is prime iff it satisfies Euclid's lemma euclemma 14713. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Distinct variable group:    x, y, P

Proof of Theorem isprm6
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmuz2 14690 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2 euclemma 14713 . . . . . 6  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  ( P  ||  ( x  x.  y )  <->  ( P  ||  x  \/  P  ||  y ) ) )
323expb 1216 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  <->  ( P  ||  x  \/  P  ||  y
) ) )
43biimpd 212 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
54ralrimivva 2820 . . 3  |-  ( P  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
61, 5jca 539 . 2  |-  ( P  e.  Prime  ->  ( P  e.  ( ZZ>= `  2
)  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
7 simpl 463 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  (
ZZ>= `  2 ) )
8 eluz2nn 11225 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
98adantr 471 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN )
109nnzd 11067 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  ZZ )
11 iddvds 14364 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  P  ||  P )
1210, 11syl 17 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  P
)
13 nncn 10644 . . . . . . . . . . . 12  |-  ( P  e.  NN  ->  P  e.  CC )
149, 13syl 17 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  CC )
15 nncn 10644 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  CC )
1615ad2antrl 739 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  CC )
17 nnne0 10669 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  =/=  0 )
1817ad2antrl 739 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  =/=  0
)
1914, 16, 18divcan1d 10411 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  x.  z )  =  P )
2012, 19breqtrrd 4442 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
2120adantr 471 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
22 simprr 771 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  ||  P
)
23 simprl 769 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN )
24 nndivdvds 14359 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  z  e.  NN )  ->  ( z  ||  P  <->  ( P  /  z )  e.  NN ) )
259, 23, 24syl2anc 671 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  ||  P 
<->  ( P  /  z
)  e.  NN ) )
2622, 25mpbid 215 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  NN )
2726nnzd 11067 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  ZZ )
28 nnz 10987 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  ZZ )
2928ad2antrl 739 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  ZZ )
3027, 29jca 539 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  e.  ZZ  /\  z  e.  ZZ ) )
31 oveq1 6321 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  y )  =  ( ( P  /  z )  x.  y ) )
3231breq2d 4427 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  ( x  x.  y )  <->  P  ||  (
( P  /  z
)  x.  y ) ) )
33 breq2 4419 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  x  <->  P  ||  ( P  /  z ) ) )
3433orbi1d 714 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  x  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  y ) ) )
3532, 34imbi12d 326 . . . . . . . . . 10  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  (
x  x.  y )  ->  ( P  ||  x  \/  P  ||  y
) )  <->  ( P  ||  ( ( P  / 
z )  x.  y
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) ) ) )
36 oveq2 6322 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( P  /  z
)  x.  y )  =  ( ( P  /  z )  x.  z ) )
3736breq2d 4427 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( P  ||  ( ( P  /  z )  x.  y )  <->  P  ||  (
( P  /  z
)  x.  z ) ) )
38 breq2 4419 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( P  ||  y  <->  P  ||  z
) )
3938orbi2d 713 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( P  ||  ( P  /  z )  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  z ) ) )
4037, 39imbi12d 326 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( P  ||  (
( P  /  z
)  x.  y )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) )  <->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) ) )
4135, 40rspc2va 3171 . . . . . . . . 9  |-  ( ( ( ( P  / 
z )  e.  ZZ  /\  z  e.  ZZ )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4230, 41sylan 478 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4321, 42mpd 15 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) )
44 dvdsle 14398 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( P  /  z
)  e.  NN )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4510, 26, 44syl2anc 671 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4614div1d 10402 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
1 )  =  P )
4746breq1d 4425 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  1 )  <_ 
( P  /  z
)  <->  P  <_  ( P  /  z ) ) )
4845, 47sylibrd 242 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  ( P  /  1 )  <_ 
( P  /  z
) ) )
49 nnrp 11339 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  z  e.  RR+ )
5049rpregt0d 11375 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
5150ad2antrl 739 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  e.  RR  /\  0  < 
z ) )
52 1rp 11334 . . . . . . . . . . . . 13  |-  1  e.  RR+
53 rpregt0 11343 . . . . . . . . . . . . 13  |-  ( 1  e.  RR+  ->  ( 1  e.  RR  /\  0  <  1 ) )
5452, 53mp1i 13 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( 1  e.  RR  /\  0  <  1 ) )
55 nnrp 11339 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  RR+ )
569, 55syl 17 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  RR+ )
5756rpregt0d 11375 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  e.  RR  /\  0  < 
P ) )
58 lediv2 10523 . . . . . . . . . . . 12  |-  ( ( ( z  e.  RR  /\  0  <  z )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( z  <_  1  <->  ( P  /  1 )  <_  ( P  / 
z ) ) )
5951, 54, 57, 58syl3anc 1276 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  ( P  / 
1 )  <_  ( P  /  z ) ) )
6048, 59sylibrd 242 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  <_  1 ) )
61 nnle1eq1 10664 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  (
z  <_  1  <->  z  = 
1 ) )
6261ad2antrl 739 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  z  =  1 ) )
6360, 62sylibd 222 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  = 
1 ) )
64 nnnn0 10904 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  z  e.  NN0 )
6564ad2antrl 739 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN0 )
6665adantr 471 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  e.  NN0 )
67 nnnn0 10904 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  NN0 )
689, 67syl 17 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN0 )
6968adantr 471 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  e.  NN0 )
70 simplrr 776 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  ||  P )
71 simpr 467 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  ||  z )
72 dvdseq 14400 . . . . . . . . . . 11  |-  ( ( ( z  e.  NN0  /\  P  e.  NN0 )  /\  ( z  ||  P  /\  P  ||  z ) )  ->  z  =  P )
7366, 69, 70, 71, 72syl22anc 1277 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  =  P )
7473ex 440 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  z  ->  z  =  P ) )
7563, 74orim12d 854 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P 
||  ( P  / 
z )  \/  P  ||  z )  ->  (
z  =  1  \/  z  =  P ) ) )
7675imp 435 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  ( P 
||  ( P  / 
z )  \/  P  ||  z ) )  -> 
( z  =  1  \/  z  =  P ) )
7743, 76syldan 477 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( z  =  1  \/  z  =  P ) )
7877an32s 818 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  ( z  e.  NN  /\  z  ||  P ) )  -> 
( z  =  1  \/  z  =  P ) )
7978expr 624 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  z  e.  NN )  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
8079ralrimiva 2813 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
81 isprm2 14680 . . 3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
827, 80, 81sylanbrc 675 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  Prime )
836, 82impbii 192 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 374    /\ wa 375    = wceq 1454    e. wcel 1897    =/= wne 2632   A.wral 2748   class class class wbr 4415   ` cfv 5600  (class class class)co 6314   CCcc 9562   RRcr 9563   0cc0 9564   1c1 9565    x. cmul 9569    < clt 9700    <_ cle 9701    / cdiv 10296   NNcn 10636   2c2 10686   NN0cn0 10897   ZZcz 10965   ZZ>=cuz 11187   RR+crp 11330    || cdvds 14353   Primecprime 14670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-2o 7208  df-oadd 7211  df-er 7388  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-sup 7981  df-inf 7982  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297  df-nn 10637  df-2 10695  df-3 10696  df-n0 10898  df-z 10966  df-uz 11188  df-rp 11331  df-fl 12059  df-mod 12128  df-seq 12245  df-exp 12304  df-cj 13210  df-re 13211  df-im 13212  df-sqrt 13346  df-abs 13347  df-dvds 14354  df-gcd 14517  df-prm 14671
This theorem is referenced by:  domnchr  19151
  Copyright terms: Public domain W3C validator