MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm6 Structured version   Unicode version

Theorem isprm6 13795
Description: A number is prime iff it satisfies Euclid's lemma euclemma 13794. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Distinct variable group:    x, y, P

Proof of Theorem isprm6
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmuz2 13781 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2 euclemma 13794 . . . . . 6  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  ( P  ||  ( x  x.  y )  <->  ( P  ||  x  \/  P  ||  y ) ) )
323expb 1188 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  <->  ( P  ||  x  \/  P  ||  y
) ) )
43biimpd 207 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
54ralrimivva 2808 . . 3  |-  ( P  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
61, 5jca 532 . 2  |-  ( P  e.  Prime  ->  ( P  e.  ( ZZ>= `  2
)  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
7 simpl 457 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  (
ZZ>= `  2 ) )
8 eluz2b2 10927 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
98simplbi 460 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
109adantr 465 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN )
1110nnzd 10746 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  ZZ )
12 iddvds 13546 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  P  ||  P )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  P
)
14 nncn 10330 . . . . . . . . . . . 12  |-  ( P  e.  NN  ->  P  e.  CC )
1510, 14syl 16 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  CC )
16 nncn 10330 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  CC )
1716ad2antrl 727 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  CC )
18 nnne0 10354 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  =/=  0 )
1918ad2antrl 727 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  =/=  0
)
2015, 17, 19divcan1d 10108 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  x.  z )  =  P )
2113, 20breqtrrd 4318 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
2221adantr 465 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
23 simprr 756 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  ||  P
)
24 simprl 755 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN )
25 nndivdvds 13541 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  z  e.  NN )  ->  ( z  ||  P  <->  ( P  /  z )  e.  NN ) )
2610, 24, 25syl2anc 661 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  ||  P 
<->  ( P  /  z
)  e.  NN ) )
2723, 26mpbid 210 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  NN )
2827nnzd 10746 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  ZZ )
29 nnz 10668 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  ZZ )
3029ad2antrl 727 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  ZZ )
3128, 30jca 532 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  e.  ZZ  /\  z  e.  ZZ ) )
32 oveq1 6098 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  y )  =  ( ( P  /  z )  x.  y ) )
3332breq2d 4304 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  ( x  x.  y )  <->  P  ||  (
( P  /  z
)  x.  y ) ) )
34 breq2 4296 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  x  <->  P  ||  ( P  /  z ) ) )
3534orbi1d 702 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  x  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  y ) ) )
3633, 35imbi12d 320 . . . . . . . . . 10  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  (
x  x.  y )  ->  ( P  ||  x  \/  P  ||  y
) )  <->  ( P  ||  ( ( P  / 
z )  x.  y
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) ) ) )
37 oveq2 6099 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( P  /  z
)  x.  y )  =  ( ( P  /  z )  x.  z ) )
3837breq2d 4304 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( P  ||  ( ( P  /  z )  x.  y )  <->  P  ||  (
( P  /  z
)  x.  z ) ) )
39 breq2 4296 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( P  ||  y  <->  P  ||  z
) )
4039orbi2d 701 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( P  ||  ( P  /  z )  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  z ) ) )
4138, 40imbi12d 320 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( P  ||  (
( P  /  z
)  x.  y )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) )  <->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) ) )
4236, 41rspc2va 3080 . . . . . . . . 9  |-  ( ( ( ( P  / 
z )  e.  ZZ  /\  z  e.  ZZ )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4331, 42sylan 471 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4422, 43mpd 15 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) )
45 dvdsle 13578 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( P  /  z
)  e.  NN )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4611, 27, 45syl2anc 661 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4715div1d 10099 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
1 )  =  P )
4847breq1d 4302 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  1 )  <_ 
( P  /  z
)  <->  P  <_  ( P  /  z ) ) )
4946, 48sylibrd 234 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  ( P  /  1 )  <_ 
( P  /  z
) ) )
50 nnrp 11000 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  z  e.  RR+ )
5150rpregt0d 11033 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
5251ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  e.  RR  /\  0  < 
z ) )
53 1rp 10995 . . . . . . . . . . . . 13  |-  1  e.  RR+
54 rpregt0 11004 . . . . . . . . . . . . 13  |-  ( 1  e.  RR+  ->  ( 1  e.  RR  /\  0  <  1 ) )
5553, 54mp1i 12 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( 1  e.  RR  /\  0  <  1 ) )
56 nnrp 11000 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  RR+ )
5710, 56syl 16 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  RR+ )
5857rpregt0d 11033 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  e.  RR  /\  0  < 
P ) )
59 lediv2 10222 . . . . . . . . . . . 12  |-  ( ( ( z  e.  RR  /\  0  <  z )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( z  <_  1  <->  ( P  /  1 )  <_  ( P  / 
z ) ) )
6052, 55, 58, 59syl3anc 1218 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  ( P  / 
1 )  <_  ( P  /  z ) ) )
6149, 60sylibrd 234 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  <_  1 ) )
62 nnle1eq1 10350 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  (
z  <_  1  <->  z  = 
1 ) )
6362ad2antrl 727 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  z  =  1 ) )
6461, 63sylibd 214 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  = 
1 ) )
65 nnnn0 10586 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  z  e.  NN0 )
6665ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN0 )
6766adantr 465 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  e.  NN0 )
68 nnnn0 10586 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  NN0 )
6910, 68syl 16 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN0 )
7069adantr 465 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  e.  NN0 )
71 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  ||  P )
72 simpr 461 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  ||  z )
73 dvdseq 13580 . . . . . . . . . . 11  |-  ( ( ( z  e.  NN0  /\  P  e.  NN0 )  /\  ( z  ||  P  /\  P  ||  z ) )  ->  z  =  P )
7467, 70, 71, 72, 73syl22anc 1219 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  =  P )
7574ex 434 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  z  ->  z  =  P ) )
7664, 75orim12d 834 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P 
||  ( P  / 
z )  \/  P  ||  z )  ->  (
z  =  1  \/  z  =  P ) ) )
7776imp 429 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  ( P 
||  ( P  / 
z )  \/  P  ||  z ) )  -> 
( z  =  1  \/  z  =  P ) )
7844, 77syldan 470 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( z  =  1  \/  z  =  P ) )
7978an32s 802 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  ( z  e.  NN  /\  z  ||  P ) )  -> 
( z  =  1  \/  z  =  P ) )
8079expr 615 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  z  e.  NN )  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
8180ralrimiva 2799 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
82 isprm2 13771 . . 3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
837, 81, 82sylanbrc 664 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  Prime )
846, 83impbii 188 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    x. cmul 9287    < clt 9418    <_ cle 9419    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   RR+crp 10991    || cdivides 13535   Primecprime 13763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-gcd 13691  df-prm 13764
This theorem is referenced by:  domnchr  17963
  Copyright terms: Public domain W3C validator