MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Visualization version   Unicode version

Theorem isprm2lem 14643
Description: Lemma for isprm2 14644. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 neeq1 2688 . . . 4  |-  ( p  =  P  ->  (
p  =/=  1  <->  P  =/=  1 ) )
2 breq2 4409 . . . . . . 7  |-  ( p  =  P  ->  (
n  ||  p  <->  n  ||  P
) )
32rabbidv 3038 . . . . . 6  |-  ( p  =  P  ->  { n  e.  NN  |  n  ||  p }  =  {
n  e.  NN  |  n  ||  P } )
43breq1d 4415 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
5 preq2 4055 . . . . . 6  |-  ( p  =  P  ->  { 1 ,  p }  =  { 1 ,  P } )
63, 5eqeq12d 2468 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
74, 6bibi12d 323 . . . 4  |-  ( p  =  P  ->  (
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
)  <->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) ) )
81, 7imbi12d 322 . . 3  |-  ( p  =  P  ->  (
( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )  <->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) ) )
9 1idssfct 14642 . . . . . . . 8  |-  ( p  e.  NN  ->  { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p } )
10 disjsn 4034 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  -.  p  e.  {
1 } )
11 1ex 9643 . . . . . . . . . . . . . 14  |-  1  e.  _V
1211ensn1 7638 . . . . . . . . . . . . 13  |-  { 1 }  ~~  1o
13 vex 3050 . . . . . . . . . . . . . 14  |-  p  e. 
_V
1413ensn1 7638 . . . . . . . . . . . . 13  |-  { p }  ~~  1o
15 pm54.43 8439 . . . . . . . . . . . . 13  |-  ( ( { 1 }  ~~  1o  /\  { p }  ~~  1o )  ->  (
( { 1 }  i^i  { p }
)  =  (/)  <->  ( {
1 }  u.  {
p } )  ~~  2o ) )
1612, 14, 15mp2an 679 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  ( { 1 }  u.  { p }
)  ~~  2o )
1710, 16bitr3i 255 . . . . . . . . . . 11  |-  ( -.  p  e.  { 1 }  <->  ( { 1 }  u.  { p } )  ~~  2o )
18 elsn 3984 . . . . . . . . . . 11  |-  ( p  e.  { 1 }  <-> 
p  =  1 )
1917, 18xchnxbi 310 . . . . . . . . . 10  |-  ( -.  p  =  1  <->  ( { 1 }  u.  { p } )  ~~  2o )
20 df-ne 2626 . . . . . . . . . 10  |-  ( p  =/=  1  <->  -.  p  =  1 )
21 df-pr 3973 . . . . . . . . . . 11  |-  { 1 ,  p }  =  ( { 1 }  u.  { p } )
2221breq1i 4412 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  2o  <->  ( { 1 }  u.  { p } )  ~~  2o )
2319, 20, 223bitr4i 281 . . . . . . . . 9  |-  ( p  =/=  1  <->  { 1 ,  p }  ~~  2o )
24 ensym 7623 . . . . . . . . . 10  |-  ( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  2o  ~~  {
n  e.  NN  |  n  ||  p } )
25 entr 7626 . . . . . . . . . 10  |-  ( ( { 1 ,  p }  ~~  2o  /\  2o  ~~ 
{ n  e.  NN  |  n  ||  p }
)  ->  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )
2624, 25sylan2 477 . . . . . . . . 9  |-  ( ( { 1 ,  p }  ~~  2o  /\  {
n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
2723, 26sylanb 475 . . . . . . . 8  |-  ( ( p  =/=  1  /\ 
{ n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
28 prfi 7851 . . . . . . . . . . 11  |-  { 1 ,  p }  e.  Fin
29 ensym 7623 . . . . . . . . . . 11  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p } )
30 enfii 7794 . . . . . . . . . . 11  |-  ( ( { 1 ,  p }  e.  Fin  /\  {
n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p }
)  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3128, 29, 30sylancr 670 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3231adantl 468 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
33 dfpss2 3520 . . . . . . . . . . . 12  |-  ( { 1 ,  p }  C. 
{ n  e.  NN  |  n  ||  p }  <->  ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
) )
34 pssinf 7787 . . . . . . . . . . . 12  |-  ( ( { 1 ,  p }  C.  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3533, 34sylanbr 476 . . . . . . . . . . 11  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  /\  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3635an32s 814 . . . . . . . . . 10  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  /\  -.  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3736ex 436 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  ( -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin ) )
3832, 37mt4d 144 . . . . . . . 8  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { 1 ,  p }  =  {
n  e.  NN  |  n  ||  p } )
399, 27, 38syl2an 480 . . . . . . 7  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p } )
4039eqcomd 2459 . . . . . 6  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } )
4140expr 620 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } ) )
42 breq1 4408 . . . . . . . 8  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { 1 ,  p }  ~~  2o ) )
4342, 23syl6bbr 267 . . . . . . 7  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  p  =/=  1 ) )
4443biimprcd 229 . . . . . 6  |-  ( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4544adantl 468 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4641, 45impbid 194 . . . 4  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )
4746ex 436 . . 3  |-  ( p  e.  NN  ->  (
p  =/=  1  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) ) )
488, 47vtoclga 3115 . 2  |-  ( P  e.  NN  ->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) )
4948imp 431 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889    =/= wne 2624   {crab 2743    u. cun 3404    i^i cin 3405    C_ wss 3406    C. wpss 3407   (/)c0 3733   {csn 3970   {cpr 3972   class class class wbr 4405   1oc1o 7180   2oc2o 7181    ~~ cen 7571   Fincfn 7574   1c1 9545   NNcn 10616    || cdvds 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-z 10945  df-dvds 14318
This theorem is referenced by:  isprm2  14644
  Copyright terms: Public domain W3C validator