MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Unicode version

Theorem isprm2lem 14100
Description: Lemma for isprm2 14101. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Distinct variable group:    P, n

Proof of Theorem isprm2lem
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 neeq1 2748 . . . 4  |-  ( p  =  P  ->  (
p  =/=  1  <->  P  =/=  1 ) )
2 breq2 4457 . . . . . . 7  |-  ( p  =  P  ->  (
n  ||  p  <->  n  ||  P
) )
32rabbidv 3110 . . . . . 6  |-  ( p  =  P  ->  { n  e.  NN  |  n  ||  p }  =  {
n  e.  NN  |  n  ||  P } )
43breq1d 4463 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
5 preq2 4113 . . . . . 6  |-  ( p  =  P  ->  { 1 ,  p }  =  { 1 ,  P } )
63, 5eqeq12d 2489 . . . . 5  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) )
74, 6bibi12d 321 . . . 4  |-  ( p  =  P  ->  (
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
)  <->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) ) )
81, 7imbi12d 320 . . 3  |-  ( p  =  P  ->  (
( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )  <->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o 
<->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) ) )
9 1idssfct 14099 . . . . . . . 8  |-  ( p  e.  NN  ->  { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p } )
10 disjsn 4094 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  -.  p  e.  {
1 } )
11 1ex 9603 . . . . . . . . . . . . . 14  |-  1  e.  _V
1211ensn1 7591 . . . . . . . . . . . . 13  |-  { 1 }  ~~  1o
13 vex 3121 . . . . . . . . . . . . . 14  |-  p  e. 
_V
1413ensn1 7591 . . . . . . . . . . . . 13  |-  { p }  ~~  1o
15 pm54.43 8393 . . . . . . . . . . . . 13  |-  ( ( { 1 }  ~~  1o  /\  { p }  ~~  1o )  ->  (
( { 1 }  i^i  { p }
)  =  (/)  <->  ( {
1 }  u.  {
p } )  ~~  2o ) )
1612, 14, 15mp2an 672 . . . . . . . . . . . 12  |-  ( ( { 1 }  i^i  { p } )  =  (/) 
<->  ( { 1 }  u.  { p }
)  ~~  2o )
1710, 16bitr3i 251 . . . . . . . . . . 11  |-  ( -.  p  e.  { 1 }  <->  ( { 1 }  u.  { p } )  ~~  2o )
18 elsn 4047 . . . . . . . . . . 11  |-  ( p  e.  { 1 }  <-> 
p  =  1 )
1917, 18xchnxbi 308 . . . . . . . . . 10  |-  ( -.  p  =  1  <->  ( { 1 }  u.  { p } )  ~~  2o )
20 df-ne 2664 . . . . . . . . . 10  |-  ( p  =/=  1  <->  -.  p  =  1 )
21 df-pr 4036 . . . . . . . . . . 11  |-  { 1 ,  p }  =  ( { 1 }  u.  { p } )
2221breq1i 4460 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  2o  <->  ( { 1 }  u.  { p } )  ~~  2o )
2319, 20, 223bitr4i 277 . . . . . . . . 9  |-  ( p  =/=  1  <->  { 1 ,  p }  ~~  2o )
24 ensym 7576 . . . . . . . . . 10  |-  ( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  2o  ~~  {
n  e.  NN  |  n  ||  p } )
25 entr 7579 . . . . . . . . . 10  |-  ( ( { 1 ,  p }  ~~  2o  /\  2o  ~~ 
{ n  e.  NN  |  n  ||  p }
)  ->  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )
2624, 25sylan2 474 . . . . . . . . 9  |-  ( ( { 1 ,  p }  ~~  2o  /\  {
n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
2723, 26sylanb 472 . . . . . . . 8  |-  ( ( p  =/=  1  /\ 
{ n  e.  NN  |  n  ||  p }  ~~  2o )  ->  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )
28 prfi 7807 . . . . . . . . . . 11  |-  { 1 ,  p }  e.  Fin
29 ensym 7576 . . . . . . . . . . 11  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p } )
30 enfii 7749 . . . . . . . . . . 11  |-  ( ( { 1 ,  p }  e.  Fin  /\  {
n  e.  NN  |  n  ||  p }  ~~  { 1 ,  p }
)  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3128, 29, 30sylancr 663 . . . . . . . . . 10  |-  ( { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p }  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
3231adantl 466 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { n  e.  NN  |  n  ||  p }  e.  Fin )
33 dfpss2 3594 . . . . . . . . . . . 12  |-  ( { 1 ,  p }  C. 
{ n  e.  NN  |  n  ||  p }  <->  ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
) )
34 pssinf 7742 . . . . . . . . . . . 12  |-  ( ( { 1 ,  p }  C.  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3533, 34sylanbr 473 . . . . . . . . . . 11  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  /\  { 1 ,  p }  ~~  {
n  e.  NN  |  n  ||  p } )  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3635an32s 802 . . . . . . . . . 10  |-  ( ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  /\  -.  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p }
)  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin )
3736ex 434 . . . . . . . . 9  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  ( -.  {
1 ,  p }  =  { n  e.  NN  |  n  ||  p }  ->  -.  { n  e.  NN  |  n  ||  p }  e.  Fin ) )
3832, 37mt4d 138 . . . . . . . 8  |-  ( ( { 1 ,  p }  C_  { n  e.  NN  |  n  ||  p }  /\  { 1 ,  p }  ~~  { n  e.  NN  |  n  ||  p } )  ->  { 1 ,  p }  =  {
n  e.  NN  |  n  ||  p } )
399, 27, 38syl2an 477 . . . . . . 7  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { 1 ,  p }  =  { n  e.  NN  |  n  ||  p } )
4039eqcomd 2475 . . . . . 6  |-  ( ( p  e.  NN  /\  ( p  =/=  1  /\  { n  e.  NN  |  n  ||  p }  ~~  2o ) )  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } )
4140expr 615 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  ->  { n  e.  NN  |  n  ||  p }  =  { 1 ,  p } ) )
42 breq1 4456 . . . . . . . 8  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { 1 ,  p }  ~~  2o ) )
4342, 23syl6bbr 263 . . . . . . 7  |-  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  p  =/=  1 ) )
4443biimprcd 225 . . . . . 6  |-  ( p  =/=  1  ->  ( { n  e.  NN  |  n  ||  p }  =  { 1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4544adantl 466 . . . . 5  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }  ->  { n  e.  NN  |  n  ||  p }  ~~  2o ) )
4641, 45impbid 191 . . . 4  |-  ( ( p  e.  NN  /\  p  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) )
4746ex 434 . . 3  |-  ( p  e.  NN  ->  (
p  =/=  1  -> 
( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  p }  =  {
1 ,  p }
) ) )
488, 47vtoclga 3182 . 2  |-  ( P  e.  NN  ->  ( P  =/=  1  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } ) ) )
4948imp 429 1  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2821    u. cun 3479    i^i cin 3480    C_ wss 3481    C. wpss 3482   (/)c0 3790   {csn 4033   {cpr 4035   class class class wbr 4453   1oc1o 7135   2oc2o 7136    ~~ cen 7525   Fincfn 7528   1c1 9505   NNcn 10548    || cdivides 13864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-z 10877  df-dvds 13865
This theorem is referenced by:  isprm2  14101
  Copyright terms: Public domain W3C validator