MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2 Structured version   Unicode version

Theorem isprm2 14236
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm2
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 1nprm 14233 . . . . 5  |-  -.  1  e.  Prime
2 eleq1 2529 . . . . . 6  |-  ( P  =  1  ->  ( P  e.  Prime  <->  1  e.  Prime ) )
32biimpcd 224 . . . . 5  |-  ( P  e.  Prime  ->  ( P  =  1  ->  1  e.  Prime ) )
41, 3mtoi 178 . . . 4  |-  ( P  e.  Prime  ->  -.  P  =  1 )
54neqned 2660 . . 3  |-  ( P  e.  Prime  ->  P  =/=  1 )
65pm4.71i 632 . 2  |-  ( P  e.  Prime  <->  ( P  e. 
Prime  /\  P  =/=  1
) )
7 isprm 14230 . . . 4  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
8 isprm2lem 14235 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }
) )
9 eqss 3514 . . . . . . . . . . 11  |-  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_ 
{ n  e.  NN  |  n  ||  P }
) )
109imbi2i 312 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  ( {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
11 1idssfct 14234 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } )
12 jcab 863 . . . . . . . . . . 11  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  ( P  e.  NN  ->  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) ) )
1311, 12mpbiran2 919 . . . . . . . . . 10  |-  ( ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P }  /\  { 1 ,  P }  C_  { n  e.  NN  |  n  ||  P } ) )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1410, 13bitri 249 . . . . . . . . 9  |-  ( ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } )  <->  ( P  e.  NN  ->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1514pm5.74ri 246 . . . . . . . 8  |-  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  =  { 1 ,  P } 
<->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) )
1615adantr 465 . . . . . . 7  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  =  {
1 ,  P }  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
178, 16bitrd 253 . . . . . 6  |-  ( ( P  e.  NN  /\  P  =/=  1 )  -> 
( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) )
1817expcom 435 . . . . 5  |-  ( P  =/=  1  ->  ( P  e.  NN  ->  ( { n  e.  NN  |  n  ||  P }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
1918pm5.32d 639 . . . 4  |-  ( P  =/=  1  ->  (
( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  ~~  2o )  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
207, 19syl5bb 257 . . 3  |-  ( P  =/=  1  ->  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } ) ) )
2120pm5.32ri 638 . 2  |-  ( ( P  e.  Prime  /\  P  =/=  1 )  <->  ( ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  /\  P  =/=  1 ) )
22 ancom 450 . . . 4  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  =/=  1  /\  ( P  e.  NN  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) ) )
23 anass 649 . . . 4  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  =/=  1  /\  ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } ) ) )
2422, 23bitr4i 252 . . 3  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( ( P  =/=  1  /\  P  e.  NN )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
25 ancom 450 . . . . 5  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
( P  e.  NN  /\  P  =/=  1 ) )
26 eluz2b3 11180 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  P  =/=  1 ) )
2725, 26bitr4i 252 . . . 4  |-  ( ( P  =/=  1  /\  P  e.  NN )  <-> 
P  e.  ( ZZ>= ` 
2 ) )
2827anbi1i 695 . . 3  |-  ( ( ( P  =/=  1  /\  P  e.  NN )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P } )  <-> 
( P  e.  (
ZZ>= `  2 )  /\  { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
) )
29 dfss2 3488 . . . . 5  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } ) )
30 breq1 4459 . . . . . . . . . 10  |-  ( n  =  z  ->  (
n  ||  P  <->  z  ||  P ) )
3130elrab 3257 . . . . . . . . 9  |-  ( z  e.  { n  e.  NN  |  n  ||  P }  <->  ( z  e.  NN  /\  z  ||  P ) )
32 vex 3112 . . . . . . . . . 10  |-  z  e. 
_V
3332elpr 4050 . . . . . . . . 9  |-  ( z  e.  { 1 ,  P }  <->  ( z  =  1  \/  z  =  P ) )
3431, 33imbi12i 326 . . . . . . . 8  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( (
z  e.  NN  /\  z  ||  P )  -> 
( z  =  1  \/  z  =  P ) ) )
35 impexp 446 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  ||  P )  ->  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3634, 35bitri 249 . . . . . . 7  |-  ( ( z  e.  { n  e.  NN  |  n  ||  P }  ->  z  e. 
{ 1 ,  P } )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3736albii 1641 . . . . . 6  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
38 df-ral 2812 . . . . . 6  |-  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z ( z  e.  NN  ->  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
3937, 38bitr4i 252 . . . . 5  |-  ( A. z ( z  e. 
{ n  e.  NN  |  n  ||  P }  ->  z  e.  { 1 ,  P } )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4029, 39bitri 249 . . . 4  |-  ( { n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }  <->  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
4140anbi2i 694 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  {
n  e.  NN  |  n  ||  P }  C_  { 1 ,  P }
)  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
4224, 28, 413bitri 271 . 2  |-  ( ( ( P  e.  NN  /\ 
{ n  e.  NN  |  n  ||  P }  C_ 
{ 1 ,  P } )  /\  P  =/=  1 )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
436, 21, 423bitri 271 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1393    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811    C_ wss 3471   {cpr 4034   class class class wbr 4456   ` cfv 5594   2oc2o 7142    ~~ cen 7532   1c1 9510   NNcn 10556   2c2 10606   ZZ>=cuz 11106    || cdvds 13997   Primecprime 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-dvds 13998  df-prm 14229
This theorem is referenced by:  isprm3  14237  isprm4  14238  dvdsprime  14241  coprm  14252  isprm6  14261  prmirredlem  18649  prmirredlemOLD  18652  znidomb  18726  perfectlem2  23630
  Copyright terms: Public domain W3C validator