MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpyd Structured version   Unicode version

Theorem isphtpyd 21313
Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
isphtpy.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
isphtpyd.1  |-  ( ph  ->  H  e.  ( F ( II Htpy  J ) G ) )
isphtpyd.2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F ` 
0 ) )
isphtpyd.3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F ` 
1 ) )
Assertion
Ref Expression
isphtpyd  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s

Proof of Theorem isphtpyd
StepHypRef Expression
1 isphtpyd.1 . 2  |-  ( ph  ->  H  e.  ( F ( II Htpy  J ) G ) )
2 isphtpyd.2 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F ` 
0 ) )
3 isphtpyd.3 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F ` 
1 ) )
42, 3jca 532 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 H s )  =  ( F `
 0 )  /\  ( 1 H s )  =  ( F `
 1 ) ) )
54ralrimiva 2878 . 2  |-  ( ph  ->  A. s  e.  ( 0 [,] 1 ) ( ( 0 H s )  =  ( F `  0 )  /\  ( 1 H s )  =  ( F `  1 ) ) )
6 isphtpy.2 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
7 isphtpy.3 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
86, 7isphtpy 21308 . 2  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
91, 5, 8mpbir2and 920 1  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   ` cfv 5588  (class class class)co 6285   0cc0 9493   1c1 9494   [,]cicc 11533    Cn ccn 19531   IIcii 21206   Htpy chtpy 21294   PHtpycphtpy 21295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-1st 6785  df-2nd 6786  df-map 7423  df-top 19206  df-topon 19209  df-cn 19534  df-phtpy 21298
This theorem is referenced by:  isphtpy2d  21314  phtpycom  21315  phtpyid  21316  phtpyco2  21317  phtpycc  21318
  Copyright terms: Public domain W3C validator