MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy Structured version   Unicode version

Theorem isphtpy 20528
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
isphtpy.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
isphtpy  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s

Proof of Theorem isphtpy
Dummy variables  f 
g  h  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . . 5  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 cntop2 18820 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
3 oveq2 6094 . . . . . . 7  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
4 oveq2 6094 . . . . . . . . 9  |-  ( j  =  J  ->  (
II Htpy  j )  =  ( II Htpy  J ) )
54oveqd 6103 . . . . . . . 8  |-  ( j  =  J  ->  (
f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g ) )
6 rabeq 2961 . . . . . . . 8  |-  ( ( f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g )  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
75, 6syl 16 . . . . . . 7  |-  ( j  =  J  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
83, 3, 7mpt2eq123dv 6143 . . . . . 6  |-  ( j  =  J  ->  (
f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } )  =  ( f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
9 df-phtpy 20518 . . . . . 6  |-  PHtpy  =  ( j  e.  Top  |->  ( f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
10 ovex 6111 . . . . . . 7  |-  ( II 
Cn  J )  e. 
_V
1110, 10mpt2ex 6645 . . . . . 6  |-  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } )  e.  _V
128, 9, 11fvmpt 5769 . . . . 5  |-  ( J  e.  Top  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } ) )
131, 2, 123syl 20 . . . 4  |-  ( ph  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J
) ,  g  e.  ( II  Cn  J
)  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } ) )
14 oveq12 6095 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( II Htpy  J ) g )  =  ( F ( II Htpy  J ) G ) )
15 simpl 457 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
1615fveq1d 5688 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  0
)  =  ( F `
 0 ) )
1716eqeq2d 2449 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 0 h s )  =  ( f `  0 )  <-> 
( 0 h s )  =  ( F `
 0 ) ) )
1815fveq1d 5688 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  1
)  =  ( F `
 1 ) )
1918eqeq2d 2449 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 1 h s )  =  ( f `  1 )  <-> 
( 1 h s )  =  ( F `
 1 ) ) )
2017, 19anbi12d 710 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  ( (
0 h s )  =  ( F ` 
0 )  /\  (
1 h s )  =  ( F ` 
1 ) ) ) )
2120ralbidv 2730 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) ) )
2214, 21rabeqbidv 2962 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
2322adantl 466 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
24 isphtpy.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
25 ovex 6111 . . . . . 6  |-  ( F ( II Htpy  J ) G )  e.  _V
2625rabex 4438 . . . . 5  |-  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  e.  _V
2726a1i 11 . . . 4  |-  ( ph  ->  { h  e.  ( F ( II Htpy  J
) G )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) ) }  e.  _V )
2813, 23, 1, 24, 27ovmpt2d 6213 . . 3  |-  ( ph  ->  ( F ( PHtpy `  J ) G )  =  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) } )
2928eleq2d 2505 . 2  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } ) )
30 oveq 6092 . . . . . 6  |-  ( h  =  H  ->  (
0 h s )  =  ( 0 H s ) )
3130eqeq1d 2446 . . . . 5  |-  ( h  =  H  ->  (
( 0 h s )  =  ( F `
 0 )  <->  ( 0 H s )  =  ( F `  0
) ) )
32 oveq 6092 . . . . . 6  |-  ( h  =  H  ->  (
1 h s )  =  ( 1 H s ) )
3332eqeq1d 2446 . . . . 5  |-  ( h  =  H  ->  (
( 1 h s )  =  ( F `
 1 )  <->  ( 1 H s )  =  ( F `  1
) ) )
3431, 33anbi12d 710 . . . 4  |-  ( h  =  H  ->  (
( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3534ralbidv 2730 . . 3  |-  ( h  =  H  ->  ( A. s  e.  (
0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( ( 0 H s )  =  ( F `  0 )  /\  ( 1 H s )  =  ( F `  1 ) ) ) )
3635elrab 3112 . 2  |-  ( H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3729, 36syl6bb 261 1  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   0cc0 9274   1c1 9275   [,]cicc 11295   Topctop 18473    Cn ccn 18803   IIcii 20426   Htpy chtpy 20514   PHtpycphtpy 20515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-map 7208  df-top 18478  df-topon 18481  df-cn 18806  df-phtpy 20518
This theorem is referenced by:  phtpyhtpy  20529  phtpyi  20531  isphtpyd  20533
  Copyright terms: Public domain W3C validator