MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy Structured version   Unicode version

Theorem isphtpy 20678
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
isphtpy.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
isphtpy  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Distinct variable groups:    F, s    G, s    H, s    J, s    ph, s

Proof of Theorem isphtpy
Dummy variables  f 
g  h  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . . 5  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 cntop2 18970 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
3 oveq2 6201 . . . . . . 7  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
4 oveq2 6201 . . . . . . . . 9  |-  ( j  =  J  ->  (
II Htpy  j )  =  ( II Htpy  J ) )
54oveqd 6210 . . . . . . . 8  |-  ( j  =  J  ->  (
f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g ) )
6 rabeq 3065 . . . . . . . 8  |-  ( ( f ( II Htpy  j
) g )  =  ( f ( II Htpy  J ) g )  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
75, 6syl 16 . . . . . . 7  |-  ( j  =  J  ->  { h  e.  ( f ( II Htpy 
j ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) }  =  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } )
83, 3, 7mpt2eq123dv 6250 . . . . . 6  |-  ( j  =  J  ->  (
f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } )  =  ( f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
9 df-phtpy 20668 . . . . . 6  |-  PHtpy  =  ( j  e.  Top  |->  ( f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  { h  e.  ( f ( II Htpy  j ) g )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `
 0 )  /\  ( 1 h s )  =  ( f `
 1 ) ) } ) )
10 ovex 6218 . . . . . . 7  |-  ( II 
Cn  J )  e. 
_V
1110, 10mpt2ex 6753 . . . . . 6  |-  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J )  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } )  e.  _V
128, 9, 11fvmpt 5876 . . . . 5  |-  ( J  e.  Top  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) } ) )
131, 2, 123syl 20 . . . 4  |-  ( ph  ->  ( PHtpy `  J )  =  ( f  e.  ( II  Cn  J
) ,  g  e.  ( II  Cn  J
)  |->  { h  e.  ( f ( II Htpy  J ) g )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) ) } ) )
14 oveq12 6202 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( II Htpy  J ) g )  =  ( F ( II Htpy  J ) G ) )
15 simpl 457 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
1615fveq1d 5794 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  0
)  =  ( F `
 0 ) )
1716eqeq2d 2465 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 0 h s )  =  ( f `  0 )  <-> 
( 0 h s )  =  ( F `
 0 ) ) )
1815fveq1d 5794 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  1
)  =  ( F `
 1 ) )
1918eqeq2d 2465 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( 1 h s )  =  ( f `  1 )  <-> 
( 1 h s )  =  ( F `
 1 ) ) )
2017, 19anbi12d 710 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  ( (
0 h s )  =  ( F ` 
0 )  /\  (
1 h s )  =  ( F ` 
1 ) ) ) )
2120ralbidv 2841 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( f `  0
)  /\  ( 1 h s )  =  ( f `  1
) )  <->  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) ) )
2214, 21rabeqbidv 3066 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  { h  e.  ( f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
2322adantl 466 . . . 4  |-  ( (
ph  /\  ( f  =  F  /\  g  =  G ) )  ->  { h  e.  (
f ( II Htpy  J
) g )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( f `  0 )  /\  ( 1 h s )  =  ( f `  1 ) ) }  =  {
h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } )
24 isphtpy.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
25 ovex 6218 . . . . . 6  |-  ( F ( II Htpy  J ) G )  e.  _V
2625rabex 4544 . . . . 5  |-  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  e.  _V
2726a1i 11 . . . 4  |-  ( ph  ->  { h  e.  ( F ( II Htpy  J
) G )  | 
A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) ) }  e.  _V )
2813, 23, 1, 24, 27ovmpt2d 6321 . . 3  |-  ( ph  ->  ( F ( PHtpy `  J ) G )  =  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) } )
2928eleq2d 2521 . 2  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1 ) ( ( 0 h s )  =  ( F `
 0 )  /\  ( 1 h s )  =  ( F `
 1 ) ) } ) )
30 oveq 6199 . . . . . 6  |-  ( h  =  H  ->  (
0 h s )  =  ( 0 H s ) )
3130eqeq1d 2453 . . . . 5  |-  ( h  =  H  ->  (
( 0 h s )  =  ( F `
 0 )  <->  ( 0 H s )  =  ( F `  0
) ) )
32 oveq 6199 . . . . . 6  |-  ( h  =  H  ->  (
1 h s )  =  ( 1 H s ) )
3332eqeq1d 2453 . . . . 5  |-  ( h  =  H  ->  (
( 1 h s )  =  ( F `
 1 )  <->  ( 1 H s )  =  ( F `  1
) ) )
3431, 33anbi12d 710 . . . 4  |-  ( h  =  H  ->  (
( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3534ralbidv 2841 . . 3  |-  ( h  =  H  ->  ( A. s  e.  (
0 [,] 1 ) ( ( 0 h s )  =  ( F `  0 )  /\  ( 1 h s )  =  ( F `  1 ) )  <->  A. s  e.  ( 0 [,] 1 ) ( ( 0 H s )  =  ( F `  0 )  /\  ( 1 H s )  =  ( F `  1 ) ) ) )
3635elrab 3217 . 2  |-  ( H  e.  { h  e.  ( F ( II Htpy  J ) G )  |  A. s  e.  ( 0 [,] 1
) ( ( 0 h s )  =  ( F `  0
)  /\  ( 1 h s )  =  ( F `  1
) ) }  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) )
3729, 36syl6bb 261 1  |-  ( ph  ->  ( H  e.  ( F ( PHtpy `  J
) G )  <->  ( H  e.  ( F ( II Htpy  J ) G )  /\  A. s  e.  ( 0 [,] 1
) ( ( 0 H s )  =  ( F `  0
)  /\  ( 1 H s )  =  ( F `  1
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   {crab 2799   _Vcvv 3071   ` cfv 5519  (class class class)co 6193    |-> cmpt2 6195   0cc0 9386   1c1 9387   [,]cicc 11407   Topctop 18623    Cn ccn 18953   IIcii 20576   Htpy chtpy 20664   PHtpycphtpy 20665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-map 7319  df-top 18628  df-topon 18631  df-cn 18956  df-phtpy 20668
This theorem is referenced by:  phtpyhtpy  20679  phtpyi  20681  isphtpyd  20683
  Copyright terms: Public domain W3C validator