MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphld Unicode version

Theorem isphld 16840
Description: Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
isphld.v  |-  ( ph  ->  V  =  ( Base `  W ) )
isphld.a  |-  ( ph  ->  .+  =  ( +g  `  W ) )
isphld.s  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
isphld.i  |-  ( ph  ->  I  =  ( .i
`  W ) )
isphld.z  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
isphld.f  |-  ( ph  ->  F  =  (Scalar `  W ) )
isphld.k  |-  ( ph  ->  K  =  ( Base `  F ) )
isphld.p  |-  ( ph  -> 
.+^  =  ( +g  `  F ) )
isphld.t  |-  ( ph  ->  .X.  =  ( .r
`  F ) )
isphld.c  |-  ( ph  ->  .*  =  ( * r `  F ) )
isphld.o  |-  ( ph  ->  O  =  ( 0g
`  F ) )
isphld.l  |-  ( ph  ->  W  e.  LVec )
isphld.r  |-  ( ph  ->  F  e.  *Ring )
isphld.cl  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x I y )  e.  K )
isphld.d  |-  ( (
ph  /\  q  e.  K  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( q  .X.  ( x I z ) ) 
.+^  ( y I z ) ) )
isphld.ns  |-  ( (
ph  /\  x  e.  V  /\  ( x I x )  =  O )  ->  x  =  .0.  )
isphld.cj  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  (  .*  `  ( x I y ) )  =  ( y I x ) )
Assertion
Ref Expression
isphld  |-  ( ph  ->  W  e.  PreHil )
Distinct variable groups:    x, q,
y, z, ph    W, q, x, y, z
Allowed substitution hints:    .+ ( x, y, z, q)    .+^ ( x, y, z, q)    .x. ( x, y, z, q)    .X. ( x, y, z, q)    F( x, y, z, q)    I( x, y, z, q)    .* ( x, y, z, q)    K( x, y, z, q)    O( x, y, z, q)    V( x, y, z, q)    .0. ( x, y, z, q)

Proof of Theorem isphld
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 isphld.l . 2  |-  ( ph  ->  W  e.  LVec )
2 isphld.f . . 3  |-  ( ph  ->  F  =  (Scalar `  W ) )
3 isphld.r . . 3  |-  ( ph  ->  F  e.  *Ring )
42, 3eqeltrrd 2479 . 2  |-  ( ph  ->  (Scalar `  W )  e.  *Ring )
5 oveq1 6047 . . . . . 6  |-  ( y  =  w  ->  (
y ( .i `  W ) x )  =  ( w ( .i `  W ) x ) )
65cbvmptv 4260 . . . . 5  |-  ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  =  ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) x ) )
7 isphld.cl . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x I y )  e.  K )
873expib 1156 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  ->  (
x I y )  e.  K ) )
9 isphld.v . . . . . . . . . . . . . . . 16  |-  ( ph  ->  V  =  ( Base `  W ) )
109eleq2d 2471 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  W
) ) )
119eleq2d 2471 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  W
) ) )
1210, 11anbi12d 692 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  <->  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) ) )
13 isphld.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  =  ( .i
`  W ) )
1413oveqd 6057 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x I y )  =  ( x ( .i `  W
) y ) )
15 isphld.k . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  =  ( Base `  F ) )
162fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  W )
) )
1715, 16eqtrd 2436 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  =  ( Base `  (Scalar `  W )
) )
1814, 17eleq12d 2472 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x I y )  e.  K  <->  ( x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) ) )
198, 12, 183imtr3d 259 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .i `  W
) y )  e.  ( Base `  (Scalar `  W ) ) ) )
2019impl 604 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  W
) )  /\  y  e.  ( Base `  W
) )  ->  (
x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) )
2120an32s 780 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( Base `  W
) )  /\  x  e.  ( Base `  W
) )  ->  (
x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) )
22 oveq1 6047 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w ( .i `  W ) y )  =  ( x ( .i `  W ) y ) )
2322cbvmptv 4260 . . . . . . . . . . 11  |-  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) y ) )  =  ( x  e.  (
Base `  W )  |->  ( x ( .i
`  W ) y ) )
2421, 23fmptd 5852 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) y ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
2524ralrimiva 2749 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) ) )
26 oveq2 6048 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
w ( .i `  W ) y )  =  ( w ( .i `  W ) z ) )
2726mpteq2dv 4256 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) y ) )  =  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) )
2827feq1d 5539 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) )  <->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) ) )
2928rspccva 3011 . . . . . . . . 9  |-  ( ( A. y  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) )  /\  z  e.  ( Base `  W
) )  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
3025, 29sylan 458 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
31 eqidd 2405 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  (Scalar `  W
)  =  (Scalar `  W ) )
32 isphld.d . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  K  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( q  .X.  ( x I z ) ) 
.+^  ( y I z ) ) )
33323exp 1152 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( q  e.  K  ->  ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  ->  (
( ( q  .x.  x )  .+  y
) I z )  =  ( ( q 
.X.  ( x I z ) )  .+^  ( y I z ) ) ) ) )
3417eleq2d 2471 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( q  e.  K  <->  q  e.  ( Base `  (Scalar `  W ) ) ) )
35 3anrot 941 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  V  /\  x  e.  V  /\  y  e.  V )  <->  ( x  e.  V  /\  y  e.  V  /\  z  e.  V )
)
369eleq2d 2471 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( z  e.  V  <->  z  e.  ( Base `  W
) ) )
3736, 10, 113anbi123d 1254 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( z  e.  V  /\  x  e.  V  /\  y  e.  V )  <->  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) ) )
3835, 37syl5bbr 251 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  <->  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) ) )
39 isphld.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  .+  =  ( +g  `  W ) )
40 isphld.s . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
4140oveqd 6057 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( q  .x.  x
)  =  ( q ( .s `  W
) x ) )
42 eqidd 2405 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  y  =  y )
4339, 41, 42oveq123d 6061 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( q  .x.  x )  .+  y
)  =  ( ( q ( .s `  W ) x ) ( +g  `  W
) y ) )
44 eqidd 2405 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  z  =  z )
4513, 43, 44oveq123d 6061 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( ( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z ) )
46 isphld.p . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> 
.+^  =  ( +g  `  F ) )
472fveq2d 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( +g  `  F
)  =  ( +g  `  (Scalar `  W )
) )
4846, 47eqtrd 2436 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
.+^  =  ( +g  `  (Scalar `  W )
) )
49 isphld.t . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  .X.  =  ( .r
`  F ) )
502fveq2d 5691 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( .r `  F
)  =  ( .r
`  (Scalar `  W )
) )
5149, 50eqtrd 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  .X.  =  ( .r
`  (Scalar `  W )
) )
52 eqidd 2405 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  q  =  q )
5313oveqd 6057 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x I z )  =  ( x ( .i `  W
) z ) )
5451, 52, 53oveq123d 6061 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( q  .X.  (
x I z ) )  =  ( q ( .r `  (Scalar `  W ) ) ( x ( .i `  W ) z ) ) )
5513oveqd 6057 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( y I z )  =  ( y ( .i `  W
) z ) )
5648, 54, 55oveq123d 6061 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( q  .X.  ( x I z ) )  .+^  ( y I z ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
5745, 56eqeq12d 2418 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( q  .x.  x ) 
.+  y ) I z )  =  ( ( q  .X.  (
x I z ) )  .+^  ( y
I z ) )  <-> 
( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) )
5838, 57imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  ->  (
( ( q  .x.  x )  .+  y
) I z )  =  ( ( q 
.X.  ( x I z ) )  .+^  ( y I z ) ) )  <->  ( (
z  e.  ( Base `  W )  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) ) ) )
5933, 34, 583imtr3d 259 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( q  e.  (
Base `  (Scalar `  W
) )  ->  (
( z  e.  (
Base `  W )  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) )  -> 
( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) )
6059imp31 422 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
61603exp2 1171 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  ( Base `  (Scalar `  W
) ) )  -> 
( z  e.  (
Base `  W )  ->  ( x  e.  (
Base `  W )  ->  ( y  e.  (
Base `  W )  ->  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) ) )
6261impancom 428 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( q  e.  ( Base `  (Scalar `  W ) )  -> 
( x  e.  (
Base `  W )  ->  ( y  e.  (
Base `  W )  ->  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) ) )
63623imp2 1168 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
64 lveclmod 16133 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LVec  ->  W  e. 
LMod )
651, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  W  e.  LMod )
6665adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  W  e.  LMod )
6766adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  W  e.  LMod )
68 eqid 2404 . . . . . . . . . . . . . 14  |-  ( Base `  W )  =  (
Base `  W )
69 eqid 2404 . . . . . . . . . . . . . 14  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
7068, 69lss1 15970 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  ( Base `  W )  e.  (
LSubSp `  W ) )
7167, 70syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( Base `  W )  e.  (
LSubSp `  W ) )
72 eqid 2404 . . . . . . . . . . . . 13  |-  (Scalar `  W )  =  (Scalar `  W )
73 eqid 2404 . . . . . . . . . . . . 13  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
74 eqid 2404 . . . . . . . . . . . . 13  |-  ( +g  `  W )  =  ( +g  `  W )
75 eqid 2404 . . . . . . . . . . . . 13  |-  ( .s
`  W )  =  ( .s `  W
)
7672, 73, 74, 75, 69lsscl 15974 . . . . . . . . . . . 12  |-  ( ( ( Base `  W
)  e.  ( LSubSp `  W )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
7771, 76sylancom 649 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
78 oveq1 6047 . . . . . . . . . . . 12  |-  ( w  =  ( ( q ( .s `  W
) x ) ( +g  `  W ) y )  ->  (
w ( .i `  W ) z )  =  ( ( ( q ( .s `  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z ) )
79 eqid 2404 . . . . . . . . . . . 12  |-  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  =  ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )
80 ovex 6065 . . . . . . . . . . . 12  |-  ( w ( .i `  W
) z )  e. 
_V
8178, 79, 80fvmpt3i 5768 . . . . . . . . . . 11  |-  ( ( ( q ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z ) )
8277, 81syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z ) )
83 simpr2 964 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  W )
)
84 oveq1 6047 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
w ( .i `  W ) z )  =  ( x ( .i `  W ) z ) )
8584, 79, 80fvmpt3i 5768 . . . . . . . . . . . . 13  |-  ( x  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 x )  =  ( x ( .i
`  W ) z ) )
8683, 85syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 x )  =  ( x ( .i
`  W ) z ) )
8786oveq2d 6056 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( q
( .r `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  x
) )  =  ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) )
88 simpr3 965 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
89 oveq1 6047 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w ( .i `  W ) z )  =  ( y ( .i `  W ) z ) )
9089, 79, 80fvmpt3i 5768 . . . . . . . . . . . 12  |-  ( y  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 y )  =  ( y ( .i
`  W ) z ) )
9188, 90syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 y )  =  ( y ( .i
`  W ) z ) )
9287, 91oveq12d 6058 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
9363, 82, 923eqtr4d 2446 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  x
) ) ( +g  `  (Scalar `  W )
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  y ) ) )
9493ralrimivvva 2759 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  A. q  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) )
9572lmodrng 15913 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
96 rlmlmod 16231 . . . . . . . . . . 11  |-  ( (Scalar `  W )  e.  Ring  -> 
(ringLMod `  (Scalar `  W
) )  e.  LMod )
9765, 95, 963syl 19 . . . . . . . . . 10  |-  ( ph  ->  (ringLMod `  (Scalar `  W
) )  e.  LMod )
9897adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  (ringLMod `  (Scalar `  W ) )  e. 
LMod )
99 rlmbas 16222 . . . . . . . . . 10  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (ringLMod `  (Scalar `  W
) ) )
100 fvex 5701 . . . . . . . . . . 11  |-  (Scalar `  W )  e.  _V
101 rlmsca 16226 . . . . . . . . . . 11  |-  ( (Scalar `  W )  e.  _V  ->  (Scalar `  W )  =  (Scalar `  (ringLMod `  (Scalar `  W ) ) ) )
102100, 101ax-mp 8 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  (ringLMod `  (Scalar `  W
) ) )
103 rlmplusg 16223 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (ringLMod `  (Scalar `  W
) ) )
104 rlmvsca 16228 . . . . . . . . . 10  |-  ( .r
`  (Scalar `  W )
)  =  ( .s
`  (ringLMod `  (Scalar `  W
) ) )
10568, 99, 72, 102, 73, 74, 103, 75, 104islmhm2 16069 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (ringLMod `  (Scalar `  W )
)  e.  LMod )  ->  ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  <-> 
( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) )  /\  (Scalar `  W )  =  (Scalar `  W )  /\  A. q  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) ) ) )
10666, 98, 105syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W )
) )  <->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) )  /\  (Scalar `  W )  =  (Scalar `  W )  /\  A. q  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) ) ) )
10730, 31, 94, 106mpbir3and 1137 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
108107ralrimiva 2749 . . . . . 6  |-  ( ph  ->  A. z  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) ) )
109 oveq2 6048 . . . . . . . . 9  |-  ( z  =  x  ->  (
w ( .i `  W ) z )  =  ( w ( .i `  W ) x ) )
110109mpteq2dv 4256 . . . . . . . 8  |-  ( z  =  x  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) )  =  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) ) )
111110eleq1d 2470 . . . . . . 7  |-  ( z  =  x  ->  (
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) )  <->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) ) )
112111rspccva 3011 . . . . . 6  |-  ( ( A. z  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  -> 
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) ) )
113108, 112sylan 458 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
1146, 113syl5eqel 2488 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
115 isphld.ns . . . . . . 7  |-  ( (
ph  /\  x  e.  V  /\  ( x I x )  =  O )  ->  x  =  .0.  )
1161153exp 1152 . . . . . 6  |-  ( ph  ->  ( x  e.  V  ->  ( ( x I x )  =  O  ->  x  =  .0.  ) ) )
11713oveqd 6057 . . . . . . . 8  |-  ( ph  ->  ( x I x )  =  ( x ( .i `  W
) x ) )
118 isphld.o . . . . . . . . 9  |-  ( ph  ->  O  =  ( 0g
`  F ) )
1192fveq2d 5691 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  F
)  =  ( 0g
`  (Scalar `  W )
) )
120118, 119eqtrd 2436 . . . . . . . 8  |-  ( ph  ->  O  =  ( 0g
`  (Scalar `  W )
) )
121117, 120eqeq12d 2418 . . . . . . 7  |-  ( ph  ->  ( ( x I x )  =  O  <-> 
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
122 isphld.z . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
123122eqeq2d 2415 . . . . . . 7  |-  ( ph  ->  ( x  =  .0.  <->  x  =  ( 0g `  W ) ) )
124121, 123imbi12d 312 . . . . . 6  |-  ( ph  ->  ( ( ( x I x )  =  O  ->  x  =  .0.  )  <->  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) ) )
125116, 10, 1243imtr3d 259 . . . . 5  |-  ( ph  ->  ( x  e.  (
Base `  W )  ->  ( ( x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) ) )
126125imp 419 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) )
127 isphld.cj . . . . . . . 8  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  (  .*  `  ( x I y ) )  =  ( y I x ) )
1281273expib 1156 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  ->  (  .*  `  ( x I y ) )  =  ( y I x ) ) )
129 isphld.c . . . . . . . . . 10  |-  ( ph  ->  .*  =  ( * r `  F ) )
1302fveq2d 5691 . . . . . . . . . 10  |-  ( ph  ->  ( * r `  F )  =  ( * r `  (Scalar `  W ) ) )
131129, 130eqtrd 2436 . . . . . . . . 9  |-  ( ph  ->  .*  =  ( * r `  (Scalar `  W ) ) )
132131, 14fveq12d 5693 . . . . . . . 8  |-  ( ph  ->  (  .*  `  (
x I y ) )  =  ( ( * r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) ) )
13313oveqd 6057 . . . . . . . 8  |-  ( ph  ->  ( y I x )  =  ( y ( .i `  W
) x ) )
134132, 133eqeq12d 2418 . . . . . . 7  |-  ( ph  ->  ( (  .*  `  ( x I y ) )  =  ( y I x )  <-> 
( ( * r `
 (Scalar `  W
) ) `  (
x ( .i `  W ) y ) )  =  ( y ( .i `  W
) x ) ) )
135128, 12, 1343imtr3d 259 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
* r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
136135expdimp 427 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( y  e.  ( Base `  W
)  ->  ( (
* r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
137136ralrimiv 2748 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  A. y  e.  ( Base `  W
) ( ( * r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) )
138114, 126, 1373jca 1134 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( (
y  e.  ( Base `  W )  |->  ( y ( .i `  W
) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W )
) )  /\  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W
) ( ( * r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
139138ralrimiva 2749 . 2  |-  ( ph  ->  A. x  e.  (
Base `  W )
( ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  /\  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W ) ( ( * r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
140 eqid 2404 . . 3  |-  ( .i
`  W )  =  ( .i `  W
)
141 eqid 2404 . . 3  |-  ( 0g
`  W )  =  ( 0g `  W
)
142 eqid 2404 . . 3  |-  ( * r `  (Scalar `  W ) )  =  ( * r `  (Scalar `  W ) )
143 eqid 2404 . . 3  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
14468, 72, 140, 141, 142, 143isphl 16814 . 2  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  (Scalar `  W )  e.  *Ring  /\  A. x  e.  ( Base `  W
) ( ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  /\  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W ) ( ( * r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) ) )
1451, 4, 139, 144syl3anbrc 1138 1  |-  ( ph  ->  W  e.  PreHil )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .rcmulr 13485   * rcstv 13486  Scalarcsca 13487   .scvsca 13488   .icip 13489   0gc0g 13678   Ringcrg 15615   *Ringcsr 15887   LModclmod 15905   LSubSpclss 15963   LMHom clmhm 16050   LVecclvec 16129  ringLModcrglmod 16196   PreHilcphl 16810
This theorem is referenced by:  hlhilphllem  32445
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mnd 14645  df-grp 14767  df-subg 14896  df-ghm 14959  df-mgp 15604  df-rng 15618  df-ur 15620  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lmhm 16053  df-lvec 16130  df-sra 16199  df-rgmod 16200  df-phl 16812
  Copyright terms: Public domain W3C validator