MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphld Structured version   Unicode version

Theorem isphld 18207
Description: Properties that determine a pre-Hilbert (inner product) space. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
isphld.v  |-  ( ph  ->  V  =  ( Base `  W ) )
isphld.a  |-  ( ph  ->  .+  =  ( +g  `  W ) )
isphld.s  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
isphld.i  |-  ( ph  ->  I  =  ( .i
`  W ) )
isphld.z  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
isphld.f  |-  ( ph  ->  F  =  (Scalar `  W ) )
isphld.k  |-  ( ph  ->  K  =  ( Base `  F ) )
isphld.p  |-  ( ph  -> 
.+^  =  ( +g  `  F ) )
isphld.t  |-  ( ph  ->  .X.  =  ( .r
`  F ) )
isphld.c  |-  ( ph  ->  .*  =  ( *r `  F ) )
isphld.o  |-  ( ph  ->  O  =  ( 0g
`  F ) )
isphld.l  |-  ( ph  ->  W  e.  LVec )
isphld.r  |-  ( ph  ->  F  e.  *Ring )
isphld.cl  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x I y )  e.  K )
isphld.d  |-  ( (
ph  /\  q  e.  K  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( q  .X.  ( x I z ) ) 
.+^  ( y I z ) ) )
isphld.ns  |-  ( (
ph  /\  x  e.  V  /\  ( x I x )  =  O )  ->  x  =  .0.  )
isphld.cj  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  (  .*  `  ( x I y ) )  =  ( y I x ) )
Assertion
Ref Expression
isphld  |-  ( ph  ->  W  e.  PreHil )
Distinct variable groups:    x, q,
y, z, ph    W, q, x, y, z
Allowed substitution hints:    .+ ( x, y, z, q)    .+^ ( x, y, z, q)    .x. ( x, y, z, q)    .X. ( x, y, z, q)    F( x, y, z, q)    I( x, y, z, q)    .* ( x, y, z, q)    K( x, y, z, q)    O( x, y, z, q)    V( x, y, z, q)    .0. ( x, y, z, q)

Proof of Theorem isphld
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 isphld.l . 2  |-  ( ph  ->  W  e.  LVec )
2 isphld.f . . 3  |-  ( ph  ->  F  =  (Scalar `  W ) )
3 isphld.r . . 3  |-  ( ph  ->  F  e.  *Ring )
42, 3eqeltrrd 2543 . 2  |-  ( ph  ->  (Scalar `  W )  e.  *Ring )
5 oveq1 6206 . . . . . 6  |-  ( y  =  w  ->  (
y ( .i `  W ) x )  =  ( w ( .i `  W ) x ) )
65cbvmptv 4490 . . . . 5  |-  ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  =  ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) x ) )
7 isphld.cl . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x I y )  e.  K )
873expib 1191 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  ->  (
x I y )  e.  K ) )
9 isphld.v . . . . . . . . . . . . . . . 16  |-  ( ph  ->  V  =  ( Base `  W ) )
109eleq2d 2524 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  W
) ) )
119eleq2d 2524 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( Base `  W
) ) )
1210, 11anbi12d 710 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  <->  ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
) ) )
13 isphld.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  =  ( .i
`  W ) )
1413oveqd 6216 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x I y )  =  ( x ( .i `  W
) y ) )
15 isphld.k . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  =  ( Base `  F ) )
162fveq2d 5802 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  W )
) )
1715, 16eqtrd 2495 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  =  ( Base `  (Scalar `  W )
) )
1814, 17eleq12d 2536 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x I y )  e.  K  <->  ( x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) ) )
198, 12, 183imtr3d 267 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .i `  W
) y )  e.  ( Base `  (Scalar `  W ) ) ) )
2019impl 620 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  W
) )  /\  y  e.  ( Base `  W
) )  ->  (
x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) )
2120an32s 802 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( Base `  W
) )  /\  x  e.  ( Base `  W
) )  ->  (
x ( .i `  W ) y )  e.  ( Base `  (Scalar `  W ) ) )
22 oveq1 6206 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
w ( .i `  W ) y )  =  ( x ( .i `  W ) y ) )
2322cbvmptv 4490 . . . . . . . . . . 11  |-  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) y ) )  =  ( x  e.  (
Base `  W )  |->  ( x ( .i
`  W ) y ) )
2421, 23fmptd 5975 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) y ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
2524ralrimiva 2829 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) ) )
26 oveq2 6207 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
w ( .i `  W ) y )  =  ( w ( .i `  W ) z ) )
2726mpteq2dv 4486 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) y ) )  =  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) )
2827feq1d 5653 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) )  <->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) ) )
2928rspccva 3176 . . . . . . . . 9  |-  ( ( A. y  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) y ) ) : (
Base `  W ) --> ( Base `  (Scalar `  W
) )  /\  z  e.  ( Base `  W
) )  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
3025, 29sylan 471 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) ) )
31 eqidd 2455 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  (Scalar `  W
)  =  (Scalar `  W ) )
32 isphld.d . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  K  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( q  .X.  ( x I z ) ) 
.+^  ( y I z ) ) )
33323exp 1187 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( q  e.  K  ->  ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  ->  (
( ( q  .x.  x )  .+  y
) I z )  =  ( ( q 
.X.  ( x I z ) )  .+^  ( y I z ) ) ) ) )
3417eleq2d 2524 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( q  e.  K  <->  q  e.  ( Base `  (Scalar `  W ) ) ) )
35 3anrot 970 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  V  /\  x  e.  V  /\  y  e.  V )  <->  ( x  e.  V  /\  y  e.  V  /\  z  e.  V )
)
369eleq2d 2524 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( z  e.  V  <->  z  e.  ( Base `  W
) ) )
3736, 10, 113anbi123d 1290 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( z  e.  V  /\  x  e.  V  /\  y  e.  V )  <->  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) ) )
3835, 37syl5bbr 259 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  <->  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) ) )
39 isphld.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  .+  =  ( +g  `  W ) )
40 isphld.s . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
4140oveqd 6216 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( q  .x.  x
)  =  ( q ( .s `  W
) x ) )
42 eqidd 2455 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  y  =  y )
4339, 41, 42oveq123d 6220 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( q  .x.  x )  .+  y
)  =  ( ( q ( .s `  W ) x ) ( +g  `  W
) y ) )
44 eqidd 2455 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  z  =  z )
4513, 43, 44oveq123d 6220 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( q 
.x.  x )  .+  y ) I z )  =  ( ( ( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z ) )
46 isphld.p . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> 
.+^  =  ( +g  `  F ) )
472fveq2d 5802 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( +g  `  F
)  =  ( +g  `  (Scalar `  W )
) )
4846, 47eqtrd 2495 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
.+^  =  ( +g  `  (Scalar `  W )
) )
49 isphld.t . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  .X.  =  ( .r
`  F ) )
502fveq2d 5802 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( .r `  F
)  =  ( .r
`  (Scalar `  W )
) )
5149, 50eqtrd 2495 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  .X.  =  ( .r
`  (Scalar `  W )
) )
52 eqidd 2455 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  q  =  q )
5313oveqd 6216 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x I z )  =  ( x ( .i `  W
) z ) )
5451, 52, 53oveq123d 6220 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( q  .X.  (
x I z ) )  =  ( q ( .r `  (Scalar `  W ) ) ( x ( .i `  W ) z ) ) )
5513oveqd 6216 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( y I z )  =  ( y ( .i `  W
) z ) )
5648, 54, 55oveq123d 6220 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( q  .X.  ( x I z ) )  .+^  ( y I z ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
5745, 56eqeq12d 2476 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( q  .x.  x ) 
.+  y ) I z )  =  ( ( q  .X.  (
x I z ) )  .+^  ( y
I z ) )  <-> 
( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) )
5838, 57imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( x  e.  V  /\  y  e.  V  /\  z  e.  V )  ->  (
( ( q  .x.  x )  .+  y
) I z )  =  ( ( q 
.X.  ( x I z ) )  .+^  ( y I z ) ) )  <->  ( (
z  e.  ( Base `  W )  /\  x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) ) ) )
5933, 34, 583imtr3d 267 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( q  e.  (
Base `  (Scalar `  W
) )  ->  (
( z  e.  (
Base `  W )  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) )  -> 
( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) )
6059imp31 432 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  q  e.  ( Base `  (Scalar `  W ) ) )  /\  ( z  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
61603exp2 1206 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  ( Base `  (Scalar `  W
) ) )  -> 
( z  e.  (
Base `  W )  ->  ( x  e.  (
Base `  W )  ->  ( y  e.  (
Base `  W )  ->  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) ) )
6261impancom 440 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( q  e.  ( Base `  (Scalar `  W ) )  -> 
( x  e.  (
Base `  W )  ->  ( y  e.  (
Base `  W )  ->  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z )  =  ( ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) ( +g  `  (Scalar `  W )
) ( y ( .i `  W ) z ) ) ) ) ) )
63623imp2 1203 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
( q ( .s
`  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
64 lveclmod 17309 . . . . . . . . . . . . . . . 16  |-  ( W  e.  LVec  ->  W  e. 
LMod )
651, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  W  e.  LMod )
6665adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  W  e.  LMod )
6766adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  W  e.  LMod )
68 eqid 2454 . . . . . . . . . . . . . 14  |-  ( Base `  W )  =  (
Base `  W )
69 eqid 2454 . . . . . . . . . . . . . 14  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
7068, 69lss1 17142 . . . . . . . . . . . . 13  |-  ( W  e.  LMod  ->  ( Base `  W )  e.  (
LSubSp `  W ) )
7167, 70syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( Base `  W )  e.  (
LSubSp `  W ) )
72 eqid 2454 . . . . . . . . . . . . 13  |-  (Scalar `  W )  =  (Scalar `  W )
73 eqid 2454 . . . . . . . . . . . . 13  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
74 eqid 2454 . . . . . . . . . . . . 13  |-  ( +g  `  W )  =  ( +g  `  W )
75 eqid 2454 . . . . . . . . . . . . 13  |-  ( .s
`  W )  =  ( .s `  W
)
7672, 73, 74, 75, 69lsscl 17146 . . . . . . . . . . . 12  |-  ( ( ( Base `  W
)  e.  ( LSubSp `  W )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
7771, 76sylancom 667 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .s `  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
) )
78 oveq1 6206 . . . . . . . . . . . 12  |-  ( w  =  ( ( q ( .s `  W
) x ) ( +g  `  W ) y )  ->  (
w ( .i `  W ) z )  =  ( ( ( q ( .s `  W ) x ) ( +g  `  W
) y ) ( .i `  W ) z ) )
79 eqid 2454 . . . . . . . . . . . 12  |-  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  =  ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )
80 ovex 6224 . . . . . . . . . . . 12  |-  ( w ( .i `  W
) z )  e. 
_V
8178, 79, 80fvmpt3i 5886 . . . . . . . . . . 11  |-  ( ( ( q ( .s
`  W ) x ) ( +g  `  W
) y )  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z ) )
8277, 81syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) ( .i
`  W ) z ) )
83 simpr2 995 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  W )
)
84 oveq1 6206 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
w ( .i `  W ) z )  =  ( x ( .i `  W ) z ) )
8584, 79, 80fvmpt3i 5886 . . . . . . . . . . . . 13  |-  ( x  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 x )  =  ( x ( .i
`  W ) z ) )
8683, 85syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 x )  =  ( x ( .i
`  W ) z ) )
8786oveq2d 6215 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( q
( .r `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  x
) )  =  ( q ( .r `  (Scalar `  W ) ) ( x ( .i
`  W ) z ) ) )
88 simpr3 996 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
89 oveq1 6206 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
w ( .i `  W ) z )  =  ( y ( .i `  W ) z ) )
9089, 79, 80fvmpt3i 5886 . . . . . . . . . . . 12  |-  ( y  e.  ( Base `  W
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 y )  =  ( y ( .i
`  W ) z ) )
9188, 90syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 y )  =  ( y ( .i
`  W ) z ) )
9287, 91oveq12d 6217 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) )  =  ( ( q ( .r
`  (Scalar `  W )
) ( x ( .i `  W ) z ) ) ( +g  `  (Scalar `  W ) ) ( y ( .i `  W ) z ) ) )
9363, 82, 923eqtr4d 2505 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Base `  W
) )  /\  (
q  e.  ( Base `  (Scalar `  W )
)  /\  x  e.  ( Base `  W )  /\  y  e.  ( Base `  W ) ) )  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) `
 ( ( q ( .s `  W
) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  x
) ) ( +g  `  (Scalar `  W )
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  y ) ) )
9493ralrimivvva 2913 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  A. q  e.  ( Base `  (Scalar `  W ) ) A. x  e.  ( Base `  W ) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) )
9572lmodrng 17078 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  (Scalar `  W )  e.  Ring )
96 rlmlmod 17408 . . . . . . . . . . 11  |-  ( (Scalar `  W )  e.  Ring  -> 
(ringLMod `  (Scalar `  W
) )  e.  LMod )
9765, 95, 963syl 20 . . . . . . . . . 10  |-  ( ph  ->  (ringLMod `  (Scalar `  W
) )  e.  LMod )
9897adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  (ringLMod `  (Scalar `  W ) )  e. 
LMod )
99 rlmbas 17398 . . . . . . . . . 10  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (ringLMod `  (Scalar `  W
) ) )
100 fvex 5808 . . . . . . . . . . 11  |-  (Scalar `  W )  e.  _V
101 rlmsca 17403 . . . . . . . . . . 11  |-  ( (Scalar `  W )  e.  _V  ->  (Scalar `  W )  =  (Scalar `  (ringLMod `  (Scalar `  W ) ) ) )
102100, 101ax-mp 5 . . . . . . . . . 10  |-  (Scalar `  W )  =  (Scalar `  (ringLMod `  (Scalar `  W
) ) )
103 rlmplusg 17399 . . . . . . . . . 10  |-  ( +g  `  (Scalar `  W )
)  =  ( +g  `  (ringLMod `  (Scalar `  W
) ) )
104 rlmvsca 17405 . . . . . . . . . 10  |-  ( .r
`  (Scalar `  W )
)  =  ( .s
`  (ringLMod `  (Scalar `  W
) ) )
10568, 99, 72, 102, 73, 74, 103, 75, 104islmhm2 17241 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  (ringLMod `  (Scalar `  W )
)  e.  LMod )  ->  ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  <-> 
( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) )  /\  (Scalar `  W )  =  (Scalar `  W )  /\  A. q  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) ) ) )
10666, 98, 105syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W )
) )  <->  ( (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) ) : ( Base `  W
) --> ( Base `  (Scalar `  W ) )  /\  (Scalar `  W )  =  (Scalar `  W )  /\  A. q  e.  (
Base `  (Scalar `  W
) ) A. x  e.  ( Base `  W
) A. y  e.  ( Base `  W
) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  ( ( q ( .s `  W ) x ) ( +g  `  W ) y ) )  =  ( ( q ( .r `  (Scalar `  W ) ) ( ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) ) `  x ) ) ( +g  `  (Scalar `  W ) ) ( ( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) ) `  y
) ) ) ) )
10730, 31, 94, 106mpbir3and 1171 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
108107ralrimiva 2829 . . . . . 6  |-  ( ph  ->  A. z  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) ) )
109 oveq2 6207 . . . . . . . . 9  |-  ( z  =  x  ->  (
w ( .i `  W ) z )  =  ( w ( .i `  W ) x ) )
110109mpteq2dv 4486 . . . . . . . 8  |-  ( z  =  x  ->  (
w  e.  ( Base `  W )  |->  ( w ( .i `  W
) z ) )  =  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) ) )
111110eleq1d 2523 . . . . . . 7  |-  ( z  =  x  ->  (
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) )  <->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) ) )
112111rspccva 3176 . . . . . 6  |-  ( ( A. z  e.  (
Base `  W )
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) z ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) )  /\  x  e.  ( Base `  W ) )  -> 
( w  e.  (
Base `  W )  |->  ( w ( .i
`  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W
) ) ) )
113108, 112sylan 471 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( w  e.  ( Base `  W
)  |->  ( w ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
1146, 113syl5eqel 2546 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) ) )
115 isphld.ns . . . . . . 7  |-  ( (
ph  /\  x  e.  V  /\  ( x I x )  =  O )  ->  x  =  .0.  )
1161153exp 1187 . . . . . 6  |-  ( ph  ->  ( x  e.  V  ->  ( ( x I x )  =  O  ->  x  =  .0.  ) ) )
11713oveqd 6216 . . . . . . . 8  |-  ( ph  ->  ( x I x )  =  ( x ( .i `  W
) x ) )
118 isphld.o . . . . . . . . 9  |-  ( ph  ->  O  =  ( 0g
`  F ) )
1192fveq2d 5802 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  F
)  =  ( 0g
`  (Scalar `  W )
) )
120118, 119eqtrd 2495 . . . . . . . 8  |-  ( ph  ->  O  =  ( 0g
`  (Scalar `  W )
) )
121117, 120eqeq12d 2476 . . . . . . 7  |-  ( ph  ->  ( ( x I x )  =  O  <-> 
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) ) )
122 isphld.z . . . . . . . 8  |-  ( ph  ->  .0.  =  ( 0g
`  W ) )
123122eqeq2d 2468 . . . . . . 7  |-  ( ph  ->  ( x  =  .0.  <->  x  =  ( 0g `  W ) ) )
124121, 123imbi12d 320 . . . . . 6  |-  ( ph  ->  ( ( ( x I x )  =  O  ->  x  =  .0.  )  <->  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) ) )
125116, 10, 1243imtr3d 267 . . . . 5  |-  ( ph  ->  ( x  e.  (
Base `  W )  ->  ( ( x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) ) )
126125imp 429 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) ) )
127 isphld.cj . . . . . . . 8  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  (  .*  `  ( x I y ) )  =  ( y I x ) )
1281273expib 1191 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  V  /\  y  e.  V )  ->  (  .*  `  ( x I y ) )  =  ( y I x ) ) )
129 isphld.c . . . . . . . . . 10  |-  ( ph  ->  .*  =  ( *r `  F ) )
1302fveq2d 5802 . . . . . . . . . 10  |-  ( ph  ->  ( *r `  F )  =  ( *r `  (Scalar `  W ) ) )
131129, 130eqtrd 2495 . . . . . . . . 9  |-  ( ph  ->  .*  =  ( *r `  (Scalar `  W ) ) )
132131, 14fveq12d 5804 . . . . . . . 8  |-  ( ph  ->  (  .*  `  (
x I y ) )  =  ( ( *r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) ) )
13313oveqd 6216 . . . . . . . 8  |-  ( ph  ->  ( y I x )  =  ( y ( .i `  W
) x ) )
134132, 133eqeq12d 2476 . . . . . . 7  |-  ( ph  ->  ( (  .*  `  ( x I y ) )  =  ( y I x )  <-> 
( ( *r `  (Scalar `  W
) ) `  (
x ( .i `  W ) y ) )  =  ( y ( .i `  W
) x ) ) )
135128, 12, 1343imtr3d 267 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( Base `  W
)  /\  y  e.  ( Base `  W )
)  ->  ( (
*r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
136135expdimp 437 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( y  e.  ( Base `  W
)  ->  ( (
*r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
137136ralrimiv 2827 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  A. y  e.  ( Base `  W
) ( ( *r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) )
138114, 126, 1373jca 1168 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  W )
)  ->  ( (
y  e.  ( Base `  W )  |->  ( y ( .i `  W
) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W )
) )  /\  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W
) ( ( *r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
139138ralrimiva 2829 . 2  |-  ( ph  ->  A. x  e.  (
Base `  W )
( ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  /\  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W ) ( ( *r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) )
140 eqid 2454 . . 3  |-  ( .i
`  W )  =  ( .i `  W
)
141 eqid 2454 . . 3  |-  ( 0g
`  W )  =  ( 0g `  W
)
142 eqid 2454 . . 3  |-  ( *r `  (Scalar `  W ) )  =  ( *r `  (Scalar `  W ) )
143 eqid 2454 . . 3  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
14468, 72, 140, 141, 142, 143isphl 18181 . 2  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  (Scalar `  W )  e.  *Ring  /\  A. x  e.  ( Base `  W
) ( ( y  e.  ( Base `  W
)  |->  ( y ( .i `  W ) x ) )  e.  ( W LMHom  (ringLMod `  (Scalar `  W ) ) )  /\  ( ( x ( .i `  W
) x )  =  ( 0g `  (Scalar `  W ) )  ->  x  =  ( 0g `  W ) )  /\  A. y  e.  ( Base `  W ) ( ( *r `  (Scalar `  W ) ) `  ( x ( .i
`  W ) y ) )  =  ( y ( .i `  W ) x ) ) ) )
1451, 4, 139, 144syl3anbrc 1172 1  |-  ( ph  ->  W  e.  PreHil )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2798   _Vcvv 3076    |-> cmpt 4457   -->wf 5521   ` cfv 5525  (class class class)co 6199   Basecbs 14291   +g cplusg 14356   .rcmulr 14357   *rcstv 14358  Scalarcsca 14359   .scvsca 14360   .icip 14361   0gc0g 14496   Ringcrg 16767   *Ringcsr 17051   LModclmod 17070   LSubSpclss 17135   LMHom clmhm 17222   LVecclvec 17305  ringLModcrglmod 17372   PreHilcphl 18177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-recs 6941  df-rdg 6975  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-sca 14372  df-vsca 14373  df-ip 14374  df-0g 14498  df-mnd 15533  df-grp 15663  df-subg 15796  df-ghm 15863  df-mgp 16713  df-ur 16725  df-rng 16769  df-subrg 16985  df-lmod 17072  df-lss 17136  df-lmhm 17225  df-lvec 17306  df-sra 17375  df-rgmod 17376  df-phl 18179
This theorem is referenced by:  frlmphl  18330  hlhilphllem  35930
  Copyright terms: Public domain W3C validator