MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphl Structured version   Visualization version   Unicode version

Theorem isphl 19195
Description: The predicate "is a generalized pre-Hilbert (inner product) space". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
isphl.v  |-  V  =  ( Base `  W
)
isphl.f  |-  F  =  (Scalar `  W )
isphl.h  |-  .,  =  ( .i `  W )
isphl.o  |-  .0.  =  ( 0g `  W )
isphl.i  |-  .*  =  ( *r `  F )
isphl.z  |-  Z  =  ( 0g `  F
)
Assertion
Ref Expression
isphl  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y ) )  =  ( y  .,  x
) ) ) )
Distinct variable groups:    x, y, V    x, W, y
Allowed substitution hints:    F( x, y)    ., ( x, y)    .* ( x, y)    .0. ( x, y)    Z( x, y)

Proof of Theorem isphl
Dummy variables  f 
g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5875 . . . . 5  |-  ( Base `  g )  e.  _V
21a1i 11 . . . 4  |-  ( g  =  W  ->  ( Base `  g )  e. 
_V )
3 fvex 5875 . . . . . 6  |-  ( .i
`  g )  e. 
_V
43a1i 11 . . . . 5  |-  ( ( g  =  W  /\  v  =  ( Base `  g ) )  -> 
( .i `  g
)  e.  _V )
5 fvex 5875 . . . . . . 7  |-  (Scalar `  g )  e.  _V
65a1i 11 . . . . . 6  |-  ( ( ( g  =  W  /\  v  =  (
Base `  g )
)  /\  h  =  ( .i `  g ) )  ->  (Scalar `  g
)  e.  _V )
7 id 22 . . . . . . . . 9  |-  ( f  =  (Scalar `  g
)  ->  f  =  (Scalar `  g ) )
8 simpll 760 . . . . . . . . . . 11  |-  ( ( ( g  =  W  /\  v  =  (
Base `  g )
)  /\  h  =  ( .i `  g ) )  ->  g  =  W )
98fveq2d 5869 . . . . . . . . . 10  |-  ( ( ( g  =  W  /\  v  =  (
Base `  g )
)  /\  h  =  ( .i `  g ) )  ->  (Scalar `  g
)  =  (Scalar `  W ) )
10 isphl.f . . . . . . . . . 10  |-  F  =  (Scalar `  W )
119, 10syl6eqr 2503 . . . . . . . . 9  |-  ( ( ( g  =  W  /\  v  =  (
Base `  g )
)  /\  h  =  ( .i `  g ) )  ->  (Scalar `  g
)  =  F )
127, 11sylan9eqr 2507 . . . . . . . 8  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  f  =  F )
1312eleq1d 2513 . . . . . . 7  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
f  e.  *Ring  <->  F  e.  *Ring
) )
14 simpllr 769 . . . . . . . . 9  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  v  =  ( Base `  g
) )
15 simplll 768 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  g  =  W )
1615fveq2d 5869 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( Base `  g )  =  ( Base `  W
) )
17 isphl.v . . . . . . . . . 10  |-  V  =  ( Base `  W
)
1816, 17syl6eqr 2503 . . . . . . . . 9  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( Base `  g )  =  V )
1914, 18eqtrd 2485 . . . . . . . 8  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  v  =  V )
20 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  h  =  ( .i `  g ) )
2115fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( .i `  g )  =  ( .i `  W
) )
22 isphl.h . . . . . . . . . . . . . 14  |-  .,  =  ( .i `  W )
2321, 22syl6eqr 2503 . . . . . . . . . . . . 13  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( .i `  g )  = 
.,  )
2420, 23eqtrd 2485 . . . . . . . . . . . 12  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  h  =  .,  )
2524oveqd 6307 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
y h x )  =  ( y  .,  x ) )
2619, 25mpteq12dv 4481 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
y  e.  v  |->  ( y h x ) )  =  ( y  e.  V  |->  ( y 
.,  x ) ) )
2712fveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (ringLMod `  f )  =  (ringLMod `  F ) )
2815, 27oveq12d 6308 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
g LMHom  (ringLMod `  f )
)  =  ( W LMHom 
(ringLMod `  F ) ) )
2926, 28eleq12d 2523 . . . . . . . . 9  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( y  e.  v 
|->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f )
)  <->  ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) ) ) )
3024oveqd 6307 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
x h x )  =  ( x  .,  x ) )
3112fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( 0g `  f )  =  ( 0g `  F
) )
32 isphl.z . . . . . . . . . . . 12  |-  Z  =  ( 0g `  F
)
3331, 32syl6eqr 2503 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( 0g `  f )  =  Z )
3430, 33eqeq12d 2466 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( x h x )  =  ( 0g
`  f )  <->  ( x  .,  x )  =  Z ) )
3515fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( 0g `  g )  =  ( 0g `  W
) )
36 isphl.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  W )
3735, 36syl6eqr 2503 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( 0g `  g )  =  .0.  )
3837eqeq2d 2461 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
x  =  ( 0g
`  g )  <->  x  =  .0.  ) )
3934, 38imbi12d 322 . . . . . . . . 9  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( ( x h x )  =  ( 0g `  f )  ->  x  =  ( 0g `  g ) )  <->  ( ( x 
.,  x )  =  Z  ->  x  =  .0.  ) ) )
4012fveq2d 5869 . . . . . . . . . . . . 13  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
*r `  f
)  =  ( *r `  F ) )
41 isphl.i . . . . . . . . . . . . 13  |-  .*  =  ( *r `  F )
4240, 41syl6eqr 2503 . . . . . . . . . . . 12  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
*r `  f
)  =  .*  )
4324oveqd 6307 . . . . . . . . . . . 12  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
x h y )  =  ( x  .,  y ) )
4442, 43fveq12d 5871 . . . . . . . . . . 11  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( *r `  f ) `  (
x h y ) )  =  (  .* 
`  ( x  .,  y ) ) )
4544, 25eqeq12d 2466 . . . . . . . . . 10  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( ( *r `  f ) `  ( x h y ) )  =  ( y h x )  <-> 
(  .*  `  (
x  .,  y )
)  =  ( y 
.,  x ) ) )
4619, 45raleqbidv 3001 . . . . . . . . 9  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( A. y  e.  v 
( ( *r `  f ) `  ( x h y ) )  =  ( y h x )  <->  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) )
4729, 39, 463anbi123d 1339 . . . . . . . 8  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) )  <-> 
( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) ) )
4819, 47raleqbidv 3001 . . . . . . 7  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  ( A. x  e.  v 
( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) )  <->  A. x  e.  V  ( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) ) )
4913, 48anbi12d 717 . . . . . 6  |-  ( ( ( ( g  =  W  /\  v  =  ( Base `  g
) )  /\  h  =  ( .i `  g ) )  /\  f  =  (Scalar `  g
) )  ->  (
( f  e.  *Ring  /\ 
A. x  e.  v  ( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) ) )  <->  ( F  e.  *Ring  /\  A. x  e.  V  ( ( y  e.  V  |->  ( y 
.,  x ) )  e.  ( W LMHom  (ringLMod `  F ) )  /\  ( ( x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y
) )  =  ( y  .,  x ) ) ) ) )
506, 49sbcied 3304 . . . . 5  |-  ( ( ( g  =  W  /\  v  =  (
Base `  g )
)  /\  h  =  ( .i `  g ) )  ->  ( [. (Scalar `  g )  / 
f ]. ( f  e.  *Ring  /\  A. x  e.  v  ( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f ) )  /\  ( ( x h x )  =  ( 0g `  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( (
*r `  f
) `  ( x h y ) )  =  ( y h x ) ) )  <-> 
( F  e.  *Ring  /\ 
A. x  e.  V  ( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) ) ) )
514, 50sbcied 3304 . . . 4  |-  ( ( g  =  W  /\  v  =  ( Base `  g ) )  -> 
( [. ( .i `  g )  /  h ]. [. (Scalar `  g
)  /  f ]. ( f  e.  *Ring  /\ 
A. x  e.  v  ( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) ) )  <->  ( F  e.  *Ring  /\  A. x  e.  V  ( ( y  e.  V  |->  ( y 
.,  x ) )  e.  ( W LMHom  (ringLMod `  F ) )  /\  ( ( x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y
) )  =  ( y  .,  x ) ) ) ) )
522, 51sbcied 3304 . . 3  |-  ( g  =  W  ->  ( [. ( Base `  g
)  /  v ]. [. ( .i `  g
)  /  h ]. [. (Scalar `  g )  /  f ]. (
f  e.  *Ring  /\  A. x  e.  v  (
( y  e.  v 
|->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f )
)  /\  ( (
x h x )  =  ( 0g `  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) ) )  <->  ( F  e.  *Ring  /\  A. x  e.  V  ( ( y  e.  V  |->  ( y 
.,  x ) )  e.  ( W LMHom  (ringLMod `  F ) )  /\  ( ( x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y
) )  =  ( y  .,  x ) ) ) ) )
53 df-phl 19193 . . 3  |-  PreHil  =  {
g  e.  LVec  |  [. ( Base `  g )  /  v ]. [. ( .i `  g )  /  h ]. [. (Scalar `  g )  /  f ]. ( f  e.  *Ring  /\ 
A. x  e.  v  ( ( y  e.  v  |->  ( y h x ) )  e.  ( g LMHom  (ringLMod `  f
) )  /\  (
( x h x )  =  ( 0g
`  f )  ->  x  =  ( 0g `  g ) )  /\  A. y  e.  v  ( ( *r `  f ) `  (
x h y ) )  =  ( y h x ) ) ) }
5452, 53elrab2 3198 . 2  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  ( F  e.  *Ring  /\ 
A. x  e.  V  ( ( y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom  (ringLMod `  F
) )  /\  (
( x  .,  x
)  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x 
.,  y ) )  =  ( y  .,  x ) ) ) ) )
55 3anass 989 . 2  |-  ( ( W  e.  LVec  /\  F  e.  *Ring  /\  A. x  e.  V  ( (
y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom 
(ringLMod `  F ) )  /\  ( ( x 
.,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y
) )  =  ( y  .,  x ) ) )  <->  ( W  e.  LVec  /\  ( F  e.  *Ring  /\  A. x  e.  V  ( (
y  e.  V  |->  ( y  .,  x ) )  e.  ( W LMHom 
(ringLMod `  F ) )  /\  ( ( x 
.,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y
) )  =  ( y  .,  x ) ) ) ) )
5654, 55bitr4i 256 1  |-  ( W  e.  PreHil 
<->  ( W  e.  LVec  /\  F  e.  *Ring  /\  A. x  e.  V  (
( y  e.  V  |->  ( y  .,  x
) )  e.  ( W LMHom  (ringLMod `  F )
)  /\  ( (
x  .,  x )  =  Z  ->  x  =  .0.  )  /\  A. y  e.  V  (  .*  `  ( x  .,  y ) )  =  ( y  .,  x
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737   _Vcvv 3045   [.wsbc 3267    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   Basecbs 15121   *rcstv 15192  Scalarcsca 15193   .icip 15195   0gc0g 15338   *Ringcsr 18072   LMHom clmhm 18242   LVecclvec 18325  ringLModcrglmod 18392   PreHilcphl 19191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-nul 4534
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-mpt 4463  df-iota 5546  df-fv 5590  df-ov 6293  df-phl 19193
This theorem is referenced by:  phllvec  19196  phlsrng  19198  phllmhm  19199  ipcj  19201  ipeq0  19205  isphld  19221  phlpropd  19222
  Copyright terms: Public domain W3C validator