MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Structured version   Unicode version

Theorem isph 24394
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1  |-  X  =  ( BaseSet `  U )
isph.2  |-  G  =  ( +v `  U
)
isph.3  |-  M  =  ( -v `  U
)
isph.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
isph  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Distinct variable groups:    x, y, G    x, M, y    x, N, y    x, U, y   
x, X, y

Proof of Theorem isph
StepHypRef Expression
1 phnv 24386 . 2  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
2 isph.2 . . . . 5  |-  G  =  ( +v `  U
)
3 eqid 2454 . . . . 5  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
4 isph.6 . . . . 5  |-  N  =  ( normCV `  U )
52, 3, 4nvop 24237 . . . 4  |-  ( U  e.  NrmCVec  ->  U  =  <. <. G ,  ( .sOLD `  U ) >. ,  N >. )
6 eleq1 2526 . . . . 5  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  <. <. G ,  ( .sOLD `  U )
>. ,  N >.  e.  CPreHil
OLD ) )
7 fvex 5812 . . . . . . . 8  |-  ( +v
`  U )  e. 
_V
82, 7eqeltri 2538 . . . . . . 7  |-  G  e. 
_V
9 fvex 5812 . . . . . . 7  |-  ( .sOLD `  U )  e.  _V
10 fvex 5812 . . . . . . . 8  |-  ( normCV `  U )  e.  _V
114, 10eqeltri 2538 . . . . . . 7  |-  N  e. 
_V
12 isph.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
1312, 2bafval 24154 . . . . . . . 8  |-  X  =  ran  G
1413isphg 24389 . . . . . . 7  |-  ( ( G  e.  _V  /\  ( .sOLD `  U
)  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  ( .sOLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( <. <. G ,  ( .sOLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .sOLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) ) )
158, 9, 11, 14mp3an 1315 . . . . . 6  |-  ( <. <. G ,  ( .sOLD `  U )
>. ,  N >.  e.  CPreHil
OLD 
<->  ( <. <. G ,  ( .sOLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .sOLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
16 isph.3 . . . . . . . . . . . . . . . 16  |-  M  =  ( -v `  U
)
1712, 2, 3, 16nvmval 24194 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  y  e.  X )  ->  (
x M y )  =  ( x G ( -u 1 ( .sOLD `  U
) y ) ) )
18173expa 1188 . . . . . . . . . . . . . 14  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( x M y )  =  ( x G (
-u 1 ( .sOLD `  U ) y ) ) )
1918fveq2d 5806 . . . . . . . . . . . . 13  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( N `  ( x M y ) )  =  ( N `  ( x G ( -u 1
( .sOLD `  U ) y ) ) ) )
2019oveq1d 6218 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( ( N `  ( x M y ) ) ^ 2 )  =  ( ( N `  ( x G (
-u 1 ( .sOLD `  U ) y ) ) ) ^ 2 ) )
2120oveq2d 6219 . . . . . . . . . . 11  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .sOLD `  U ) y ) ) ) ^ 2 ) ) )
2221eqeq1d 2456 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) )  <->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .sOLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2322ralbidva 2844 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .sOLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2423ralbidva 2844 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  ( A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .sOLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
2524pm5.32i 637 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .sOLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
26 eleq1 2526 . . . . . . . 8  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( U  e.  NrmCVec  <->  <. <. G , 
( .sOLD `  U ) >. ,  N >.  e.  NrmCVec ) )
2726anbi1d 704 . . . . . . 7  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .sOLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )  <->  ( <. <. G , 
( .sOLD `  U ) >. ,  N >.  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .sOLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) ) )
2825, 27syl5rbb 258 . . . . . 6  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( ( <. <. G , 
( .sOLD `  U ) >. ,  N >.  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .sOLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) )  <-> 
( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
2915, 28syl5bb 257 . . . . 5  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( <. <. G ,  ( .sOLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
306, 29bitrd 253 . . . 4  |-  ( U  =  <. <. G ,  ( .sOLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
315, 30syl 16 . . 3  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
3231bianabs 875 . 2  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<-> 
A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
331, 32biadan2 642 1  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078   <.cop 3994   ` cfv 5529  (class class class)co 6203   1c1 9397    + caddc 9399    x. cmul 9401   -ucneg 9710   2c2 10485   ^cexp 11985   NrmCVeccnv 24134   +vcpv 24135   BaseSetcba 24136   .sOLDcns 24137   -vcnsb 24139   normCVcnmcv 24140   CPreHil OLDccphlo 24384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-po 4752  df-so 4753  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-pnf 9534  df-mnf 9535  df-ltxr 9537  df-sub 9711  df-neg 9712  df-grpo 23850  df-gid 23851  df-ginv 23852  df-gdiv 23853  df-ablo 23941  df-vc 24096  df-nv 24142  df-va 24145  df-ba 24146  df-sm 24147  df-0v 24148  df-vs 24149  df-nmcv 24150  df-ph 24385
This theorem is referenced by:  phpar2  24395  sspph  24427
  Copyright terms: Public domain W3C validator