MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isph Unicode version

Theorem isph 21230
Description: The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isph.1  |-  X  =  ( BaseSet `  U )
isph.2  |-  G  =  ( +v `  U
)
isph.3  |-  M  =  ( -v `  U
)
isph.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
isph  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Distinct variable groups:    x, y, G    x, M, y    x, N, y    x, U, y   
x, X, y

Proof of Theorem isph
StepHypRef Expression
1 phnv 21222 . 2  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
2 isph.2 . . . . 5  |-  G  =  ( +v `  U
)
3 eqid 2253 . . . . 5  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
4 isph.6 . . . . 5  |-  N  =  ( normCV `  U )
52, 3, 4nvop 21073 . . . 4  |-  ( U  e.  NrmCVec  ->  U  =  <. <. G ,  ( .s OLD `  U ) >. ,  N >. )
6 eleq1 2313 . . . . 5  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  <. <. G ,  ( .s
OLD `  U ) >. ,  N >.  e.  CPreHil OLD ) )
7 fvex 5391 . . . . . . . 8  |-  ( +v
`  U )  e. 
_V
82, 7eqeltri 2323 . . . . . . 7  |-  G  e. 
_V
9 fvex 5391 . . . . . . 7  |-  ( .s
OLD `  U )  e.  _V
10 fvex 5391 . . . . . . . 8  |-  ( normCV `  U )  e.  _V
114, 10eqeltri 2323 . . . . . . 7  |-  N  e. 
_V
12 isph.1 . . . . . . . . 9  |-  X  =  ( BaseSet `  U )
1312, 2bafval 20990 . . . . . . . 8  |-  X  =  ran  G
1413isphg 21225 . . . . . . 7  |-  ( ( G  e.  _V  /\  ( .s OLD `  U
)  e.  _V  /\  N  e.  _V )  ->  ( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) ) )
158, 9, 11, 14mp3an 1282 . . . . . 6  |-  ( <. <. G ,  ( .s
OLD `  U ) >. ,  N >.  e.  CPreHil OLD  <->  (
<. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
16 isph.3 . . . . . . . . . . . . . . . 16  |-  M  =  ( -v `  U
)
1712, 2, 3, 16nvmval 21030 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  x  e.  X  /\  y  e.  X )  ->  (
x M y )  =  ( x G ( -u 1 ( .s OLD `  U
) y ) ) )
18173expa 1156 . . . . . . . . . . . . . 14  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( x M y )  =  ( x G (
-u 1 ( .s
OLD `  U )
y ) ) )
1918fveq2d 5381 . . . . . . . . . . . . 13  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( N `  ( x M y ) )  =  ( N `  ( x G ( -u 1
( .s OLD `  U
) y ) ) ) )
2019oveq1d 5725 . . . . . . . . . . . 12  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( ( N `  ( x M y ) ) ^ 2 )  =  ( ( N `  ( x G (
-u 1 ( .s
OLD `  U )
y ) ) ) ^ 2 ) )
2120oveq2d 5726 . . . . . . . . . . 11  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) ) )
2221eqeq1d 2261 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  x  e.  X )  /\  y  e.  X
)  ->  ( (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) )  <->  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2322ralbidva 2523 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  x  e.  X )  ->  ( A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
2423ralbidva 2523 . . . . . . . 8  |-  ( U  e.  NrmCVec  ->  ( A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x M y ) ) ^
2 ) )  =  ( 2  x.  (
( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) )  <->  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) )
2524pm5.32i 621 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) )  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  ( (
( N `  (
x G y ) ) ^ 2 )  +  ( ( N `
 ( x G ( -u 1 ( .s OLD `  U
) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
26 eleq1 2313 . . . . . . . 8  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  NrmCVec  <->  <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec ) )
2726anbi1d 688 . . . . . . 7  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )  <->  ( <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) ) ) )
2825, 27syl5rbb 251 . . . . . 6  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( ( <. <. G , 
( .s OLD `  U
) >. ,  N >.  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x G ( -u
1 ( .s OLD `  U ) y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x
) ^ 2 )  +  ( ( N `
 y ) ^
2 ) ) ) )  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) ) )
2915, 28syl5bb 250 . . . . 5  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( <. <. G ,  ( .s OLD `  U
) >. ,  N >.  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
306, 29bitrd 246 . . . 4  |-  ( U  =  <. <. G ,  ( .s OLD `  U
) >. ,  N >.  -> 
( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
315, 30syl 17 . . 3  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<->  ( U  e.  NrmCVec  /\  A. x  e.  X  A. y  e.  X  (
( ( N `  ( x G y ) ) ^ 2 )  +  ( ( N `  ( x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `
 x ) ^
2 )  +  ( ( N `  y
) ^ 2 ) ) ) ) ) )
3231bianabs 855 . 2  |-  ( U  e.  NrmCVec  ->  ( U  e.  CPreHil
OLD 
<-> 
A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
331, 32biadan2 626 1  |-  ( U  e.  CPreHil OLD  <->  ( U  e.  NrmCVec 
/\  A. x  e.  X  A. y  e.  X  ( ( ( N `
 ( x G y ) ) ^
2 )  +  ( ( N `  (
x M y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( N `  x ) ^ 2 )  +  ( ( N `  y ) ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509   _Vcvv 2727   <.cop 3547   ` cfv 4592  (class class class)co 5710   1c1 8618    + caddc 8620    x. cmul 8622   -ucneg 8918   2c2 9675   ^cexp 10982   NrmCVeccnv 20970   +vcpv 20971   BaseSetcba 20972   .s
OLDcns 20973   -vcnsb 20975   normCVcnmcv 20976   CPreHil OLDccphlo 21220
This theorem is referenced by:  phpar2  21231  sspph  21263
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ph 21221
  Copyright terms: Public domain W3C validator