Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispautN Structured version   Unicode version

Theorem ispautN 36236
Description: The predictate "is a projective automorphism." (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pautset.s  |-  S  =  ( PSubSp `  K )
pautset.m  |-  M  =  ( PAut `  K
)
Assertion
Ref Expression
ispautN  |-  ( K  e.  B  ->  ( F  e.  M  <->  ( F : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) ) )
Distinct variable groups:    x, y, F    x, K    x, S, y
Allowed substitution hints:    B( x, y)    K( y)    M( x, y)

Proof of Theorem ispautN
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 pautset.s . . . 4  |-  S  =  ( PSubSp `  K )
2 pautset.m . . . 4  |-  M  =  ( PAut `  K
)
31, 2pautsetN 36235 . . 3  |-  ( K  e.  B  ->  M  =  { f  |  ( f : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  (
x  C_  y  <->  ( f `  x )  C_  (
f `  y )
) ) } )
43eleq2d 2452 . 2  |-  ( K  e.  B  ->  ( F  e.  M  <->  F  e.  { f  |  ( f : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( f `  x )  C_  (
f `  y )
) ) } ) )
5 f1of 5724 . . . . 5  |-  ( F : S -1-1-onto-> S  ->  F : S
--> S )
6 fvex 5784 . . . . . 6  |-  ( PSubSp `  K )  e.  _V
71, 6eqeltri 2466 . . . . 5  |-  S  e. 
_V
8 fex 6046 . . . . 5  |-  ( ( F : S --> S  /\  S  e.  _V )  ->  F  e.  _V )
95, 7, 8sylancl 660 . . . 4  |-  ( F : S -1-1-onto-> S  ->  F  e.  _V )
109adantr 463 . . 3  |-  ( ( F : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  (
x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) )  ->  F  e.  _V )
11 f1oeq1 5715 . . . 4  |-  ( f  =  F  ->  (
f : S -1-1-onto-> S  <->  F : S
-1-1-onto-> S ) )
12 fveq1 5773 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5773 . . . . . . 7  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
1412, 13sseq12d 3446 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  C_  ( f `  y )  <->  ( F `  x )  C_  ( F `  y )
) )
1514bibi2d 316 . . . . 5  |-  ( f  =  F  ->  (
( x  C_  y  <->  ( f `  x ) 
C_  ( f `  y ) )  <->  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) )
16152ralbidv 2826 . . . 4  |-  ( f  =  F  ->  ( A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( f `  x )  C_  (
f `  y )
)  <->  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) )
1711, 16anbi12d 708 . . 3  |-  ( f  =  F  ->  (
( f : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( f `  x )  C_  (
f `  y )
) )  <->  ( F : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) ) )
1810, 17elab3 3178 . 2  |-  ( F  e.  { f  |  ( f : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( f `  x )  C_  (
f `  y )
) ) }  <->  ( F : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) )
194, 18syl6bb 261 1  |-  ( K  e.  B  ->  ( F  e.  M  <->  ( F : S -1-1-onto-> S  /\  A. x  e.  S  A. y  e.  S  ( x  C_  y  <->  ( F `  x )  C_  ( F `  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   {cab 2367   A.wral 2732   _Vcvv 3034    C_ wss 3389   -->wf 5492   -1-1-onto->wf1o 5495   ` cfv 5496   PSubSpcpsubsp 35633   PAutcpautN 36124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-map 7340  df-pautN 36128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator