MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isowe2 Structured version   Unicode version

Theorem isowe2 6231
Description: A weak form of isowe 6230 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isowe2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  We  B  ->  R  We  A
) )
Distinct variable groups:    x, A    x, B    x, R    x, S    x, H

Proof of Theorem isowe2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  H  Isom  R ,  S  ( A ,  B ) )
2 imaeq2 5155 . . . . . . 7  |-  ( x  =  y  ->  ( H " x )  =  ( H " y
) )
32eleq1d 2473 . . . . . 6  |-  ( x  =  y  ->  (
( H " x
)  e.  _V  <->  ( H " y )  e.  _V ) )
43spv 2040 . . . . 5  |-  ( A. x ( H "
x )  e.  _V  ->  ( H " y
)  e.  _V )
54adantl 466 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( H "
y )  e.  _V )
61, 5isofrlem 6221 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  Fr  B  ->  R  Fr  A
) )
7 isosolem 6228 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
87adantr 465 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  Or  B  ->  R  Or  A
) )
96, 8anim12d 563 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( ( S  Fr  B  /\  S  Or  B )  ->  ( R  Fr  A  /\  R  Or  A )
) )
10 df-we 4786 . 2  |-  ( S  We  B  <->  ( S  Fr  B  /\  S  Or  B ) )
11 df-we 4786 . 2  |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
129, 10, 113imtr4g 272 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  A. x ( H "
x )  e.  _V )  ->  ( S  We  B  ->  R  We  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1405    e. wcel 1844   _Vcvv 3061    Or wor 4745    Fr wfr 4781    We wwe 4783   "cima 4828    Isom wiso 5572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pr 4632
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-br 4398  df-opab 4456  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580
This theorem is referenced by:  fnwelem  6901  ltweuz  12115
  Copyright terms: Public domain W3C validator