MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isotr Structured version   Unicode version

Theorem isotr 6217
Description: Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
isotr  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )

Proof of Theorem isotr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  G : B -1-1-onto-> C )
2 simpl 457 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  H : A -1-1-onto-> B )
3 f1oco 5828 . . . 4  |-  ( ( G : B -1-1-onto-> C  /\  H : A -1-1-onto-> B )  ->  ( G  o.  H ) : A -1-1-onto-> C )
41, 2, 3syl2anr 478 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( G  o.  H
) : A -1-1-onto-> C )
5 f1of 5806 . . . . . . . . . . . 12  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
65ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  H : A
--> B )
7 simprl 756 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  x  e.  A )
86, 7ffvelrnd 6017 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  x )  e.  B
)
9 simprr 757 . . . . . . . . . . 11  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  y  e.  A )
106, 9ffvelrnd 6017 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( H `  y )  e.  B
)
11 simplrr 762 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )
12 breq1 4440 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
z S w  <->  ( H `  x ) S w ) )
13 fveq2 5856 . . . . . . . . . . . . 13  |-  ( z  =  ( H `  x )  ->  ( G `  z )  =  ( G `  ( H `  x ) ) )
1413breq1d 4447 . . . . . . . . . . . 12  |-  ( z  =  ( H `  x )  ->  (
( G `  z
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  w ) ) )
1512, 14bibi12d 321 . . . . . . . . . . 11  |-  ( z  =  ( H `  x )  ->  (
( z S w  <-> 
( G `  z
) T ( G `
 w ) )  <-> 
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) ) ) )
16 breq2 4441 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( H `  x
) S w  <->  ( H `  x ) S ( H `  y ) ) )
17 fveq2 5856 . . . . . . . . . . . . 13  |-  ( w  =  ( H `  y )  ->  ( G `  w )  =  ( G `  ( H `  y ) ) )
1817breq2d 4449 . . . . . . . . . . . 12  |-  ( w  =  ( H `  y )  ->  (
( G `  ( H `  x )
) T ( G `
 w )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
1916, 18bibi12d 321 . . . . . . . . . . 11  |-  ( w  =  ( H `  y )  ->  (
( ( H `  x ) S w  <-> 
( G `  ( H `  x )
) T ( G `
 w ) )  <-> 
( ( H `  x ) S ( H `  y )  <-> 
( G `  ( H `  x )
) T ( G `
 ( H `  y ) ) ) ) )
2015, 19rspc2va 3206 . . . . . . . . . 10  |-  ( ( ( ( H `  x )  e.  B  /\  ( H `  y
)  e.  B )  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
218, 10, 11, 20syl21anc 1228 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
22 fvco3 5935 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
236, 7, 22syl2anc 661 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  x )  =  ( G `  ( H `
 x ) ) )
24 fvco3 5935 . . . . . . . . . . 11  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( ( G  o.  H ) `  y
)  =  ( G `
 ( H `  y ) ) )
256, 9, 24syl2anc 661 . . . . . . . . . 10  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( G  o.  H ) `  y )  =  ( G `  ( H `
 y ) ) )
2623, 25breq12d 4450 . . . . . . . . 9  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
( G  o.  H
) `  x ) T ( ( G  o.  H ) `  y )  <->  ( G `  ( H `  x
) ) T ( G `  ( H `
 y ) ) ) )
2721, 26bitr4d 256 . . . . . . . 8  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( ( H `  x ) S ( H `  y )  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) )
2827bibi2d 318 . . . . . . 7  |-  ( ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
29282ralbidva 2885 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3029biimpd 207 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3130impancom 440 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( ( G  o.  H ) `  x ) T ( ( G  o.  H
) `  y )
) ) )
3231imp 429 . . 3  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) )
334, 32jca 532 . 2  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) )  -> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
34 df-isom 5587 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
35 df-isom 5587 . . 3  |-  ( G 
Isom  S ,  T  ( B ,  C )  <-> 
( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <-> 
( G `  z
) T ( G `
 w ) ) ) )
3634, 35anbi12i 697 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  <->  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  ( G : B -1-1-onto-> C  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( G `  z ) T ( G `  w ) ) ) ) )
37 df-isom 5587 . 2  |-  ( ( G  o.  H ) 
Isom  R ,  T  ( A ,  C )  <-> 
( ( G  o.  H ) : A -1-1-onto-> C  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( ( G  o.  H ) `  x
) T ( ( G  o.  H ) `
 y ) ) ) )
3833, 36, 373imtr4i 266 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  G  Isom  S ,  T  ( B ,  C ) )  ->  ( G  o.  H )  Isom  R ,  T  ( A ,  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793   class class class wbr 4437    o. ccom 4993   -->wf 5574   -1-1-onto->wf1o 5577   ` cfv 5578    Isom wiso 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587
This theorem is referenced by:  weisoeq  6236  oieu  7967  fz1isolem  12492  erdsze2lem2  28626  fzisoeu  31454
  Copyright terms: Public domain W3C validator