MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoselem Structured version   Unicode version

Theorem isoselem 6037
Description: Lemma for isose 6039. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isoselem  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isoselem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5207 . . . . . . . . 9  |-  ( R Se  A  <->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e. 
_V )
21biimpi 194 . . . . . . . 8  |-  ( R Se  A  ->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e.  _V )
32r19.21bi 2819 . . . . . . 7  |-  ( ( R Se  A  /\  z  e.  A )  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
43expcom 435 . . . . . 6  |-  ( z  e.  A  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
54adantl 466 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
6 imaeq2 5170 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( H " x
)  =  ( H
" ( A  i^i  ( `' R " { z } ) ) ) )
76eleq1d 2509 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( H "
x )  e.  _V  <->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
87imbi2d 316 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( ph  ->  ( H " x )  e.  _V )  <->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) ) )
9 isofrlem.2 . . . . . . . . 9  |-  ( ph  ->  ( H " x
)  e.  _V )
108, 9vtoclg 3035 . . . . . . . 8  |-  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1110com12 31 . . . . . . 7  |-  ( ph  ->  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1211adantr 465 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
13 isofrlem.1 . . . . . . . 8  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
14 isoini 6034 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1513, 14sylan 471 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1615eleq1d 2509 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V  <->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
1712, 16sylibd 214 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
185, 17syld 44 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
1918ralrimdva 2811 . . 3  |-  ( ph  ->  ( R Se  A  ->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
20 isof1o 6021 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
21 f1ofn 5647 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
22 sneq 3892 . . . . . . . . 9  |-  ( y  =  ( H `  z )  ->  { y }  =  { ( H `  z ) } )
2322imaeq2d 5174 . . . . . . . 8  |-  ( y  =  ( H `  z )  ->  ( `' S " { y } )  =  ( `' S " { ( H `  z ) } ) )
2423ineq2d 3557 . . . . . . 7  |-  ( y  =  ( H `  z )  ->  ( B  i^i  ( `' S " { y } ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
2524eleq1d 2509 . . . . . 6  |-  ( y  =  ( H `  z )  ->  (
( B  i^i  ( `' S " { y } ) )  e. 
_V 
<->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2625ralrn 5851 . . . . 5  |-  ( H  Fn  A  ->  ( A. y  e.  ran  H ( B  i^i  ( `' S " { y } ) )  e. 
_V 
<-> 
A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2713, 20, 21, 264syl 21 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
28 f1ofo 5653 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
29 forn 5628 . . . . . 6  |-  ( H : A -onto-> B  ->  ran  H  =  B )
3013, 20, 28, 294syl 21 . . . . 5  |-  ( ph  ->  ran  H  =  B )
3130raleqdv 2928 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e.  _V )
)
3227, 31bitr3d 255 . . 3  |-  ( ph  ->  ( A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V 
<-> 
A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
3319, 32sylibd 214 . 2  |-  ( ph  ->  ( R Se  A  ->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
34 dfse2 5207 . 2  |-  ( S Se  B  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V )
3533, 34syl6ibr 227 1  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977    i^i cin 3332   {csn 3882   Se wse 4682   `'ccnv 4844   ran crn 4846   "cima 4848    Fn wfn 5418   -onto->wfo 5421   -1-1-onto->wf1o 5422   ` cfv 5423    Isom wiso 5424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-se 4685  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432
This theorem is referenced by:  isose  6039
  Copyright terms: Public domain W3C validator