MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoselem Structured version   Visualization version   Unicode version

Theorem isoselem 6262
Description: Lemma for isose 6264. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isoselem  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isoselem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 5224 . . . . . . . . 9  |-  ( R Se  A  <->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e. 
_V )
21biimpi 199 . . . . . . . 8  |-  ( R Se  A  ->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e.  _V )
32r19.21bi 2769 . . . . . . 7  |-  ( ( R Se  A  /\  z  e.  A )  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
43expcom 441 . . . . . 6  |-  ( z  e.  A  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
54adantl 472 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
6 imaeq2 5186 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( H " x
)  =  ( H
" ( A  i^i  ( `' R " { z } ) ) ) )
76eleq1d 2524 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( H "
x )  e.  _V  <->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
87imbi2d 322 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( ph  ->  ( H " x )  e.  _V )  <->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) ) )
9 isofrlem.2 . . . . . . . . 9  |-  ( ph  ->  ( H " x
)  e.  _V )
108, 9vtoclg 3119 . . . . . . . 8  |-  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1110com12 32 . . . . . . 7  |-  ( ph  ->  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1211adantr 471 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
13 isofrlem.1 . . . . . . . 8  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
14 isoini 6259 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1513, 14sylan 478 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1615eleq1d 2524 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V  <->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
1712, 16sylibd 222 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
185, 17syld 45 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
1918ralrimdva 2818 . . 3  |-  ( ph  ->  ( R Se  A  ->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
20 isof1o 6246 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
21 f1ofn 5842 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
22 sneq 3990 . . . . . . . . 9  |-  ( y  =  ( H `  z )  ->  { y }  =  { ( H `  z ) } )
2322imaeq2d 5190 . . . . . . . 8  |-  ( y  =  ( H `  z )  ->  ( `' S " { y } )  =  ( `' S " { ( H `  z ) } ) )
2423ineq2d 3646 . . . . . . 7  |-  ( y  =  ( H `  z )  ->  ( B  i^i  ( `' S " { y } ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
2524eleq1d 2524 . . . . . 6  |-  ( y  =  ( H `  z )  ->  (
( B  i^i  ( `' S " { y } ) )  e. 
_V 
<->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2625ralrn 6053 . . . . 5  |-  ( H  Fn  A  ->  ( A. y  e.  ran  H ( B  i^i  ( `' S " { y } ) )  e. 
_V 
<-> 
A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2713, 20, 21, 264syl 19 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
28 f1ofo 5848 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
29 forn 5823 . . . . . 6  |-  ( H : A -onto-> B  ->  ran  H  =  B )
3013, 20, 28, 294syl 19 . . . . 5  |-  ( ph  ->  ran  H  =  B )
3130raleqdv 3005 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e.  _V )
)
3227, 31bitr3d 263 . . 3  |-  ( ph  ->  ( A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V 
<-> 
A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
3319, 32sylibd 222 . 2  |-  ( ph  ->  ( R Se  A  ->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
34 dfse2 5224 . 2  |-  ( S Se  B  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V )
3533, 34syl6ibr 235 1  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898   A.wral 2749   _Vcvv 3057    i^i cin 3415   {csn 3980   Se wse 4813   `'ccnv 4855   ran crn 4857   "cima 4859    Fn wfn 5600   -onto->wfo 5603   -1-1-onto->wf1o 5604   ` cfv 5605    Isom wiso 5606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pr 4656
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-se 4816  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-isom 5614
This theorem is referenced by:  isose  6264
  Copyright terms: Public domain W3C validator