MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem2 Unicode version

Theorem isosctrlem2 20616
Description: Lemma for isosctr 20618. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.)
Assertion
Ref Expression
isosctrlem2  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )

Proof of Theorem isosctrlem2
StepHypRef Expression
1 ax-1cn 9004 . . . . . . . 8  |-  1  e.  CC
21a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  CC )
3 simpl1 960 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  A  e.  CC )
42, 3negsubd 9373 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  +  -u A )  =  ( 1  -  A ) )
5 1rp 10572 . . . . . . . 8  |-  1  e.  RR+
65a1i 11 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  RR+ )
7 simpl3 962 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -.  1  =  A
)
8 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( abs `  A
)  =  1 )
92, 3, 2sub32d 9399 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  =  ( ( 1  -  1 )  -  A ) )
10 1m1e0 10024 . . . . . . . . . . . . . . . . 17  |-  ( 1  -  1 )  =  0
1110oveq1i 6050 . . . . . . . . . . . . . . . 16  |-  ( ( 1  -  1 )  -  A )  =  ( 0  -  A
)
12 df-neg 9250 . . . . . . . . . . . . . . . 16  |-  -u A  =  ( 0  -  A )
1311, 12eqtr4i 2427 . . . . . . . . . . . . . . 15  |-  ( ( 1  -  1 )  -  A )  = 
-u A
149, 13syl6eq 2452 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  =  -u A
)
151a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  1  e.  CC )
16 simp1 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  A  e.  CC )
1715, 16subcld 9367 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  A
)  e.  CC )
1817adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  CC )
19 subeq0 9283 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
201, 19mpan 652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  CC  ->  (
( 1  -  A
)  =  0  <->  1  =  A ) )
2120biimpd 199 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  CC  ->  (
( 1  -  A
)  =  0  -> 
1  =  A ) )
2221con3and 429 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  -.  1  =  A
)  ->  -.  (
1  -  A )  =  0 )
2322neneqad 2637 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  -.  1  =  A
)  ->  ( 1  -  A )  =/=  0 )
24233adant2 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  A
)  =/=  0 )
2524adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  =/=  0 )
2618, 25recrecd 9743 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  /  ( 1  -  A ) ) )  =  ( 1  -  A ) )
2715, 17, 24div2negd 9761 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  /  -u ( 1  -  A
) )  =  ( 1  /  ( 1  -  A ) ) )
2827adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u 1  /  -u (
1  -  A ) )  =  ( 1  /  ( 1  -  A ) ) )
2916negcld 9354 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u A  e.  CC )
3029, 17, 24cjdivd 11983 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( ( * `  -u A
)  /  ( * `
 ( 1  -  A ) ) ) )
3116cjnegd 11971 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  -u A
)  =  -u (
* `  A )
)
32 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A  =  0  ->  ( abs `  A )  =  ( abs `  0
) )
33 abs0 12045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( abs `  0 )  =  0
3432, 33syl6eq 2452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A  =  0  ->  ( abs `  A )  =  0 )
35 eqtr2 2422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( abs `  A
)  =  1  /\  ( abs `  A
)  =  0 )  ->  1  =  0 )
3634, 35sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( abs `  A
)  =  1  /\  A  =  0 )  ->  1  =  0 )
37 ax-1ne0 9015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  1  =/=  0
38 id 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( 1  =/=  0  ->  1  =/=  0 )
3938neneqd 2583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( 1  =/=  0  ->  -.  1  =  0 )
4037, 39mp1i 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( abs `  A
)  =  1  /\  A  =  0 )  ->  -.  1  = 
0 )
4136, 40pm2.65da 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( abs `  A )  =  1  ->  -.  A  =  0 )
4241adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  ->  -.  A  =  0
)
43 df-ne 2569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A  =/=  0  <->  -.  A  =  0 )
44 oveq1 6047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
) ^ 2 )  =  ( 1 ^ 2 ) )
45 sq1 11431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( 1 ^ 2 )  =  1
4644, 45syl6eq 2452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
) ^ 2 )  =  1 )
4746adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( ( abs `  A
) ^ 2 )  =  1 )
48 absvalsq 12040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
4948adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( ( abs `  A
) ^ 2 )  =  ( A  x.  ( * `  A
) ) )
5047, 49eqtr3d 2438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
1  =  ( A  x.  ( * `  A ) ) )
51503adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  1  =  ( A  x.  ( * `  A
) ) )
5251oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
1  /  A )  =  ( ( A  x.  ( * `  A ) )  /  A ) )
53 simp1 957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  A  e.  CC )
5453cjcld 11956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
* `  A )  e.  CC )
55 simp3 959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  A  =/=  0 )
5654, 53, 55divcan3d 9751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
( A  x.  (
* `  A )
)  /  A )  =  ( * `  A ) )
5752, 56eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  A  =/=  0 )  ->  (
1  /  A )  =  ( * `  A ) )
5843, 57syl3an3br 1225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  A  =  0 )  ->  ( 1  /  A )  =  ( * `  A ) )
5942, 58mpd3an3 1280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( 1  /  A
)  =  ( * `
 A ) )
6059eqcomd 2409 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  A
)  =  ( 1  /  A ) )
61603adant3 977 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  A
)  =  ( 1  /  A ) )
6261negeqd 9256 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u ( * `  A )  =  -u ( 1  /  A
) )
6331, 62eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  -u A
)  =  -u (
1  /  A ) )
6463oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( * `  -u A )  /  (
* `  ( 1  -  A ) ) )  =  ( -u (
1  /  A )  /  ( * `  ( 1  -  A
) ) ) )
65 cjsub 11909 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( * `  (
1  -  A ) )  =  ( ( * `  1 )  -  ( * `  A ) ) )
661, 65mpan 652 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  e.  CC  ->  (
* `  ( 1  -  A ) )  =  ( ( * ` 
1 )  -  (
* `  A )
) )
67 1re 9046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  1  e.  RR
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A  e.  CC  ->  1  e.  RR )
6968cjred 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A  e.  CC  ->  (
* `  1 )  =  1 )
7069oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  e.  CC  ->  (
( * `  1
)  -  ( * `
 A ) )  =  ( 1  -  ( * `  A
) ) )
7166, 70eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  e.  CC  ->  (
* `  ( 1  -  A ) )  =  ( 1  -  (
* `  A )
) )
7271adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  (
1  -  A ) )  =  ( 1  -  ( * `  A ) ) )
7360oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( 1  -  (
* `  A )
)  =  ( 1  -  ( 1  /  A ) ) )
7472, 73eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1 )  -> 
( * `  (
1  -  A ) )  =  ( 1  -  ( 1  /  A ) ) )
75743adant3 977 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  (
1  -  A ) )  =  ( 1  -  ( 1  /  A ) ) )
7675oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( * `  (
1  -  A ) ) )  =  (
-u ( 1  /  A )  /  (
1  -  ( 1  /  A ) ) ) )
7730, 64, 763eqtrd 2440 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u ( 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
78413ad2ant2 979 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  -.  A  =  0 )
7978neneqad 2637 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  A  =/=  0 )
801a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
1  e.  CC )
81 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  e.  CC )
82 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  A  =/=  0 )
8380, 81, 82divnegd 9759 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  A  =/=  0 )  ->  -u ( 1  /  A
)  =  ( -u
1  /  A ) )
8483oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -u ( 1  /  A )  /  (
1  -  ( 1  /  A ) ) )  =  ( (
-u 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
8516, 79, 84syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( 1  -  (
1  /  A ) ) )  =  ( ( -u 1  /  A )  /  (
1  -  ( 1  /  A ) ) ) )
8615negcld 9354 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u 1  e.  CC )
8786, 16, 79divcld 9746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  /  A )  e.  CC )
8816, 79reccld 9739 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  A
)  e.  CC )
8915, 88subcld 9367 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  (
1  /  A ) )  e.  CC )
9017, 24cjne0d 11963 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  (
1  -  A ) )  =/=  0 )
9175, 90eqnetrrd 2587 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  -  (
1  /  A ) )  =/=  0 )
9287, 89, 16, 91, 79divcan5d 9772 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  ( -u 1  /  A
) )  /  ( A  x.  ( 1  -  ( 1  /  A ) ) ) )  =  ( (
-u 1  /  A
)  /  ( 1  -  ( 1  /  A ) ) ) )
9386, 16, 79divcan2d 9748 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  ( -u 1  /  A ) )  =  -u 1
)
9416, 15, 88subdid 9445 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  -  ( 1  /  A ) ) )  =  ( ( A  x.  1 )  -  ( A  x.  ( 1  /  A
) ) ) )
9516mulid1d 9061 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  1 )  =  A )
9616, 79recidd 9741 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  /  A ) )  =  1 )
9795, 96oveq12d 6058 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  1 )  -  ( A  x.  ( 1  /  A ) ) )  =  ( A  -  1 ) )
9894, 97eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  x.  (
1  -  ( 1  /  A ) ) )  =  ( A  -  1 ) )
9993, 98oveq12d 6058 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( ( A  x.  ( -u 1  /  A
) )  /  ( A  x.  ( 1  -  ( 1  /  A ) ) ) )  =  ( -u
1  /  ( A  -  1 ) ) )
10085, 92, 993eqtr2d 2442 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u ( 1  /  A )  / 
( 1  -  (
1  /  A ) ) )  =  (
-u 1  /  ( A  -  1 ) ) )
101 subcl 9261 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  e.  CC )
102101negnegd 9358 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u -u ( A  - 
1 )  =  ( A  -  1 ) )
103 negsubdi2 9316 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u ( A  - 
1 )  =  ( 1  -  A ) )
104103negeqd 9256 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CC  /\  1  e.  CC )  -> 
-u -u ( A  - 
1 )  =  -u ( 1  -  A
) )
105102, 104eqtr3d 2438 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  -  1 )  =  -u (
1  -  A ) )
10616, 15, 105syl2anc 643 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( A  -  1 )  =  -u (
1  -  A ) )
107106oveq2d 6056 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u 1  / 
( A  -  1 ) )  =  (
-u 1  /  -u (
1  -  A ) ) )
10877, 100, 1073eqtrd 2440 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u
1  /  -u (
1  -  A ) ) )
109108adantr 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u
1  /  -u (
1  -  A ) ) )
11029, 17, 24divcld 9746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u A  / 
( 1  -  A
) )  e.  CC )
111110adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  CC )
112 simpr 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( -u A  /  ( 1  -  A ) ) )  =  0 )
113111, 112reim0bd 11960 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  RR )
114113cjred 11986 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  =  ( -u A  /  ( 1  -  A ) ) )
115114, 113eqeltrd 2478 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( * `  ( -u A  /  ( 1  -  A ) ) )  e.  RR )
116109, 115eqeltrrd 2479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u 1  /  -u (
1  -  A ) )  e.  RR )
11728, 116eqeltrrd 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  -  A ) )  e.  RR )
11817, 24recne0d 9740 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  (
1  -  A ) )  =/=  0 )
119118adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  -  A ) )  =/=  0 )
120117, 119rereccld 9797 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  /  (
1  /  ( 1  -  A ) ) )  e.  RR )
12126, 120eqeltrrd 2479 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  RR )
12267a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  e.  RR )
123121, 122resubcld 9421 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( 1  -  A )  -  1 )  e.  RR )
12414, 123eqeltrrd 2479 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -u A  e.  RR )
1253, 124negrebd 9366 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  A  e.  RR )
126125absord 12173 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A ) )
127 eqeq1 2410 . . . . . . . . . . . . 13  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  A  <->  1  =  A ) )
128127biimpd 199 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  A  -> 
1  =  A ) )
129 eqeq1 2410 . . . . . . . . . . . . 13  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  -u A  <->  1  =  -u A ) )
130129biimpd 199 . . . . . . . . . . . 12  |-  ( ( abs `  A )  =  1  ->  (
( abs `  A
)  =  -u A  ->  1  =  -u A
) )
131128, 130orim12d 812 . . . . . . . . . . 11  |-  ( ( abs `  A )  =  1  ->  (
( ( abs `  A
)  =  A  \/  ( abs `  A )  =  -u A )  -> 
( 1  =  A  \/  1  =  -u A ) ) )
1328, 126, 131sylc 58 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  =  A  \/  1  =  -u A ) )
133132ord 367 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -.  1  =  A  ->  1  =  -u A ) )
1347, 133mpd 15 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
1  =  -u A
)
135134, 6eqeltrrd 2479 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  ->  -u A  e.  RR+ )
1366, 135rpaddcld 10619 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  +  -u A )  e.  RR+ )
1374, 136eqeltrrd 2479 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( 1  -  A
)  e.  RR+ )
138137relogcld 20471 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( log `  (
1  -  A ) )  e.  RR )
139138reim0d 11985 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  0 )
140135, 137rpdivcld 10621 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  RR+ )
141140relogcld 20471 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( log `  ( -u A  /  ( 1  -  A ) ) )  e.  RR )
142141reim0d 11985 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  =  0 )
143139, 142eqtr4d 2439 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
14417, 24logcld 20421 . . . . . 6  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  -  A ) )  e.  CC )
145144adantr 452 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
1  -  A ) )  e.  CC )
146145imcld 11955 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  e.  RR )
147146recnd 9070 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  e.  CC )
148110adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( -u A  /  (
1  -  A ) )  e.  CC )
14916, 79negne0d 9365 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u A  =/=  0
)
15029, 17, 149, 24divne0d 9762 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( -u A  / 
( 1  -  A
) )  =/=  0
)
151150adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( -u A  /  (
1  -  A ) )  =/=  0 )
152148, 151logcld 20421 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  ( -u A  /  ( 1  -  A ) ) )  e.  CC )
153152imcld 11955 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  e.  RR )
154153recnd 9070 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) )  e.  CC )
155108fveq2d 5691 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( log `  ( -u 1  /  -u ( 1  -  A
) ) ) )
156155adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( log `  ( -u 1  /  -u ( 1  -  A
) ) ) )
157 logcj 20454 . . . . . . 7  |-  ( ( ( -u A  / 
( 1  -  A
) )  e.  CC  /\  ( Im `  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  ( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
158110, 157sylan 458 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  (
* `  ( -u A  /  ( 1  -  A ) ) ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
15917, 24reccld 9739 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( 1  /  (
1  -  A ) )  e.  CC )
160159, 118logcld 20421 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  /  ( 1  -  A ) ) )  e.  CC )
161160negnegd 9358 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u -u ( log `  (
1  /  ( 1  -  A ) ) )  =  ( log `  ( 1  /  (
1  -  A ) ) ) )
162 isosctrlem1 20615 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =/=  pi )
163 logrec 20614 . . . . . . . . . 10  |-  ( ( ( 1  -  A
)  e.  CC  /\  ( 1  -  A
)  =/=  0  /\  ( Im `  ( log `  ( 1  -  A ) ) )  =/=  pi )  -> 
( log `  (
1  -  A ) )  =  -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
16417, 24, 162, 163syl3anc 1184 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  (
1  -  A ) )  =  -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
165164negeqd 9256 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  -> 
-u ( log `  (
1  -  A ) )  =  -u -u ( log `  ( 1  / 
( 1  -  A
) ) ) )
16627fveq2d 5691 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  ( log `  ( 1  /  ( 1  -  A ) ) ) )
167161, 165, 1663eqtr4rd 2447 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  -u ( log `  ( 1  -  A ) ) )
168167adantr 452 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( log `  ( -u 1  /  -u (
1  -  A ) ) )  =  -u ( log `  ( 1  -  A ) ) )
169156, 158, 1683eqtr3rd 2445 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  -u ( log `  (
1  -  A ) )  =  ( * `
 ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
170169fveq2d 5691 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  -u ( log `  ( 1  -  A ) ) )  =  ( Im `  ( * `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) ) )
171145imnegd 11970 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  -u ( log `  ( 1  -  A ) ) )  =  -u ( Im `  ( log `  ( 1  -  A ) ) ) )
172152imcjd 11965 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  (
* `  ( log `  ( -u A  / 
( 1  -  A
) ) ) ) )  =  -u (
Im `  ( log `  ( -u A  / 
( 1  -  A
) ) ) ) )
173170, 171, 1723eqtr3d 2444 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  ->  -u ( Im `  ( log `  ( 1  -  A ) ) )  =  -u ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
174147, 154, 173neg11d 9379 . 2  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  =  1  /\ 
-.  1  =  A )  /\  ( Im
`  ( -u A  /  ( 1  -  A ) ) )  =/=  0 )  -> 
( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
175143, 174pm2.61dane 2645 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  =  1  /\  -.  1  =  A )  ->  ( Im `  ( log `  ( 1  -  A ) ) )  =  ( Im `  ( log `  ( -u A  /  ( 1  -  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   2c2 10005   RR+crp 10568   ^cexp 11337   *ccj 11856   Imcim 11858   abscabs 11994   picpi 12624   logclog 20405
This theorem is referenced by:  isosctrlem3  20617
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407
  Copyright terms: Public domain W3C validator