MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores1 Structured version   Unicode version

Theorem isores1 6213
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 6209 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 isores2 6212 . . . . 5  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
31, 2sylib 196 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A
) ) ( B ,  A ) )
4 isocnv 6209 . . . 4  |-  ( `' H  Isom  S , 
( R  i^i  ( A  X.  A ) ) ( B ,  A
)  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
53, 4syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
6 isof1o 6204 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
7 f1orel 5802 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Rel  H )
8 dfrel2 5274 . . . . 5  |-  ( Rel 
H  <->  `' `' H  =  H
)
9 isoeq1 6198 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
108, 9sylbi 195 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
116, 7, 103syl 18 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
125, 11mpbid 210 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
13 isocnv 6209 . . . . 5  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
1413, 2sylibr 212 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  R  ( B ,  A ) )
15 isocnv 6209 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
1614, 15syl 17 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
17 isof1o 6204 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H : A
-1-1-onto-> B )
18 isoeq1 6198 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( A ,  B ) ) )
198, 18sylbi 195 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2017, 7, 193syl 18 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2116, 20mpbid 210 . 2  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H  Isom  R ,  S  ( A ,  B ) )
2212, 21impbii 187 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1405    i^i cin 3413    X. cxp 4821   `'ccnv 4822   Rel wrel 4828   -1-1-onto->wf1o 5568    Isom wiso 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578
This theorem is referenced by:  leiso  12557  icopnfhmeo  21735  iccpnfhmeo  21737  xrhmeo  21738  gtiso  27963  xrge0iifhmeo  28371
  Copyright terms: Public domain W3C validator