Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isopos Structured version   Unicode version

Theorem isopos 33995
Description: The predicate "is an orthoposet." (Contributed by NM, 20-Oct-2011.) (Revised by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
isopos.b  |-  B  =  ( Base `  K
)
isopos.e  |-  U  =  ( lub `  K
)
isopos.g  |-  G  =  ( glb `  K
)
isopos.l  |-  .<_  =  ( le `  K )
isopos.o  |-  ._|_  =  ( oc `  K )
isopos.j  |-  .\/  =  ( join `  K )
isopos.m  |-  ./\  =  ( meet `  K )
isopos.f  |-  .0.  =  ( 0. `  K )
isopos.u  |-  .1.  =  ( 1. `  K )
Assertion
Ref Expression
isopos  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Distinct variable groups:    x, y, B    x,  ._|_ , y    x, K, y
Allowed substitution hints:    U( x, y)    .1. ( x, y)    G( x, y)    .\/ ( x, y)    .<_ ( x, y)    ./\ ( x, y)    .0. ( x, y)

Proof of Theorem isopos
Dummy variables  n  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5866 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
2 isopos.b . . . . . . 7  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2526 . . . . . 6  |-  ( p  =  K  ->  ( Base `  p )  =  B )
4 fveq2 5866 . . . . . . . 8  |-  ( p  =  K  ->  ( lub `  p )  =  ( lub `  K
) )
5 isopos.e . . . . . . . 8  |-  U  =  ( lub `  K
)
64, 5syl6eqr 2526 . . . . . . 7  |-  ( p  =  K  ->  ( lub `  p )  =  U )
76dmeqd 5205 . . . . . 6  |-  ( p  =  K  ->  dom  ( lub `  p )  =  dom  U )
83, 7eleq12d 2549 . . . . 5  |-  ( p  =  K  ->  (
( Base `  p )  e.  dom  ( lub `  p
)  <->  B  e.  dom  U ) )
9 fveq2 5866 . . . . . . . 8  |-  ( p  =  K  ->  ( glb `  p )  =  ( glb `  K
) )
10 isopos.g . . . . . . . 8  |-  G  =  ( glb `  K
)
119, 10syl6eqr 2526 . . . . . . 7  |-  ( p  =  K  ->  ( glb `  p )  =  G )
1211dmeqd 5205 . . . . . 6  |-  ( p  =  K  ->  dom  ( glb `  p )  =  dom  G )
133, 12eleq12d 2549 . . . . 5  |-  ( p  =  K  ->  (
( Base `  p )  e.  dom  ( glb `  p
)  <->  B  e.  dom  G ) )
148, 13anbi12d 710 . . . 4  |-  ( p  =  K  ->  (
( ( Base `  p
)  e.  dom  ( lub `  p )  /\  ( Base `  p )  e.  dom  ( glb `  p
) )  <->  ( B  e.  dom  U  /\  B  e.  dom  G ) ) )
15 fveq2 5866 . . . . . . . 8  |-  ( p  =  K  ->  ( oc `  p )  =  ( oc `  K
) )
16 isopos.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
1715, 16syl6eqr 2526 . . . . . . 7  |-  ( p  =  K  ->  ( oc `  p )  = 
._|_  )
1817eqeq2d 2481 . . . . . 6  |-  ( p  =  K  ->  (
n  =  ( oc
`  p )  <->  n  =  ._|_  ) )
193eleq2d 2537 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( n `  x
)  e.  ( Base `  p )  <->  ( n `  x )  e.  B
) )
20 fveq2 5866 . . . . . . . . . . . . 13  |-  ( p  =  K  ->  ( le `  p )  =  ( le `  K
) )
21 isopos.l . . . . . . . . . . . . 13  |-  .<_  =  ( le `  K )
2220, 21syl6eqr 2526 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( le `  p )  = 
.<_  )
2322breqd 4458 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
x ( le `  p ) y  <->  x  .<_  y ) )
2422breqd 4458 . . . . . . . . . . 11  |-  ( p  =  K  ->  (
( n `  y
) ( le `  p ) ( n `
 x )  <->  ( n `  y )  .<_  ( n `
 x ) ) )
2523, 24imbi12d 320 . . . . . . . . . 10  |-  ( p  =  K  ->  (
( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) )  <->  ( x  .<_  y  ->  ( n `  y )  .<_  ( n `
 x ) ) ) )
2619, 253anbi13d 1301 . . . . . . . . 9  |-  ( p  =  K  ->  (
( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  <->  ( (
n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) ) ) )
27 fveq2 5866 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( join `  p )  =  ( join `  K
) )
28 isopos.j . . . . . . . . . . . 12  |-  .\/  =  ( join `  K )
2927, 28syl6eqr 2526 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( join `  p )  = 
.\/  )
3029oveqd 6301 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( join `  p
) ( n `  x ) )  =  ( x  .\/  (
n `  x )
) )
31 fveq2 5866 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( 1. `  p )  =  ( 1. `  K
) )
32 isopos.u . . . . . . . . . . 11  |-  .1.  =  ( 1. `  K )
3331, 32syl6eqr 2526 . . . . . . . . . 10  |-  ( p  =  K  ->  ( 1. `  p )  =  .1.  )
3430, 33eqeq12d 2489 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( join `  p ) ( n `
 x ) )  =  ( 1. `  p )  <->  ( x  .\/  ( n `  x
) )  =  .1.  ) )
35 fveq2 5866 . . . . . . . . . . . 12  |-  ( p  =  K  ->  ( meet `  p )  =  ( meet `  K
) )
36 isopos.m . . . . . . . . . . . 12  |-  ./\  =  ( meet `  K )
3735, 36syl6eqr 2526 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( meet `  p )  = 
./\  )
3837oveqd 6301 . . . . . . . . . 10  |-  ( p  =  K  ->  (
x ( meet `  p
) ( n `  x ) )  =  ( x  ./\  (
n `  x )
) )
39 fveq2 5866 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( 0. `  p )  =  ( 0. `  K
) )
40 isopos.f . . . . . . . . . . 11  |-  .0.  =  ( 0. `  K )
4139, 40syl6eqr 2526 . . . . . . . . . 10  |-  ( p  =  K  ->  ( 0. `  p )  =  .0.  )
4238, 41eqeq12d 2489 . . . . . . . . 9  |-  ( p  =  K  ->  (
( x ( meet `  p ) ( n `
 x ) )  =  ( 0. `  p )  <->  ( x  ./\  ( n `  x
) )  =  .0.  ) )
4326, 34, 423anbi123d 1299 . . . . . . . 8  |-  ( p  =  K  ->  (
( ( ( n `
 x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
443, 43raleqbidv 3072 . . . . . . 7  |-  ( p  =  K  ->  ( A. y  e.  ( Base `  p ) ( ( ( n `  x )  e.  (
Base `  p )  /\  ( n `  (
n `  x )
)  =  x  /\  ( x ( le
`  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
453, 44raleqbidv 3072 . . . . . 6  |-  ( p  =  K  ->  ( A. x  e.  ( Base `  p ) A. y  e.  ( Base `  p ) ( ( ( n `  x
)  e.  ( Base `  p )  /\  (
n `  ( n `  x ) )  =  x  /\  ( x ( le `  p
) y  ->  (
n `  y )
( le `  p
) ( n `  x ) ) )  /\  ( x (
join `  p )
( n `  x
) )  =  ( 1. `  p )  /\  ( x (
meet `  p )
( n `  x
) )  =  ( 0. `  p ) )  <->  A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )
4618, 45anbi12d 710 . . . . 5  |-  ( p  =  K  ->  (
( n  =  ( oc `  p )  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  ( (
( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) )
4746exbidv 1690 . . . 4  |-  ( p  =  K  ->  ( E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) )  <->  E. n
( n  =  ._|_  /\ 
A. x  e.  B  A. y  e.  B  ( ( ( n `
 x )  e.  B  /\  ( n `
 ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) )
4814, 47anbi12d 710 . . 3  |-  ( p  =  K  ->  (
( ( ( Base `  p )  e.  dom  ( lub `  p )  /\  ( Base `  p
)  e.  dom  ( glb `  p ) )  /\  E. n ( n  =  ( oc
`  p )  /\  A. x  e.  ( Base `  p ) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) )  <->  ( ( B  e.  dom  U  /\  B  e.  dom  G )  /\  E. n ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) ) )
49 df-oposet 33991 . . 3  |-  OP  =  { p  e.  Poset  |  ( ( ( Base `  p
)  e.  dom  ( lub `  p )  /\  ( Base `  p )  e.  dom  ( glb `  p
) )  /\  E. n ( n  =  ( oc `  p
)  /\  A. x  e.  ( Base `  p
) A. y  e.  ( Base `  p
) ( ( ( n `  x )  e.  ( Base `  p
)  /\  ( n `  ( n `  x
) )  =  x  /\  ( x ( le `  p ) y  ->  ( n `  y ) ( le
`  p ) ( n `  x ) ) )  /\  (
x ( join `  p
) ( n `  x ) )  =  ( 1. `  p
)  /\  ( x
( meet `  p )
( n `  x
) )  =  ( 0. `  p ) ) ) ) }
5048, 49elrab2 3263 . 2  |-  ( K  e.  OP  <->  ( K  e.  Poset  /\  ( ( B  e.  dom  U  /\  B  e.  dom  G )  /\  E. n ( n  =  ._|_  /\  A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  ) ) ) ) )
51 anass 649 . 2  |-  ( ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( K  e.  Poset  /\  ( ( B  e. 
dom  U  /\  B  e. 
dom  G )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) ) ) )
52 3anass 977 . . . 4  |-  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  <->  ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) ) )
5352bicomi 202 . . 3  |-  ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  <->  ( K  e. 
Poset  /\  B  e.  dom  U  /\  B  e.  dom  G ) )
54 fvex 5876 . . . . 5  |-  ( oc
`  K )  e. 
_V
5516, 54eqeltri 2551 . . . 4  |-  ._|_  e.  _V
56 fveq1 5865 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 x )  =  (  ._|_  `  x ) )
5756eleq1d 2536 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  x )  e.  B  <->  (  ._|_  `  x )  e.  B
) )
58 id 22 . . . . . . . . 9  |-  ( n  =  ._|_  ->  n  = 
._|_  )
5958, 56fveq12d 5872 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( n `
 ( n `  x ) )  =  (  ._|_  `  (  ._|_  `  x ) ) )
6059eqeq1d 2469 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( n `  ( n `
 x ) )  =  x  <->  (  ._|_  `  (  ._|_  `  x ) )  =  x ) )
61 fveq1 5865 . . . . . . . . 9  |-  ( n  =  ._|_  ->  ( n `
 y )  =  (  ._|_  `  y ) )
6261, 56breq12d 4460 . . . . . . . 8  |-  ( n  =  ._|_  ->  ( ( n `  y ) 
.<_  ( n `  x
)  <->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )
6362imbi2d 316 . . . . . . 7  |-  ( n  =  ._|_  ->  ( ( x  .<_  y  ->  ( n `  y ) 
.<_  ( n `  x
) )  <->  ( x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) )
6457, 60, 633anbi123d 1299 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( ( n `  x
)  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  <-> 
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) ) ) )
6556oveq2d 6300 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
.\/  ( n `  x ) )  =  ( x  .\/  (  ._|_  `  x ) ) )
6665eqeq1d 2469 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  .\/  ( n `
 x ) )  =  .1.  <->  ( x  .\/  (  ._|_  `  x
) )  =  .1.  ) )
6756oveq2d 6300 . . . . . . 7  |-  ( n  =  ._|_  ->  ( x 
./\  ( n `  x ) )  =  ( x  ./\  (  ._|_  `  x ) ) )
6867eqeq1d 2469 . . . . . 6  |-  ( n  =  ._|_  ->  ( ( x  ./\  ( n `  x ) )  =  .0.  <->  ( x  ./\  (  ._|_  `  x )
)  =  .0.  )
)
6964, 66, 683anbi123d 1299 . . . . 5  |-  ( n  =  ._|_  ->  ( ( ( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  ( ( ( 
._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x  .<_  y  -> 
(  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
70692ralbidv 2908 . . . 4  |-  ( n  =  ._|_  ->  ( A. x  e.  B  A. y  e.  B  (
( ( n `  x )  e.  B  /\  ( n `  (
n `  x )
)  =  x  /\  ( x  .<_  y  -> 
( n `  y
)  .<_  ( n `  x ) ) )  /\  ( x  .\/  ( n `  x
) )  =  .1. 
/\  ( x  ./\  ( n `  x
) )  =  .0.  )  <->  A. x  e.  B  A. y  e.  B  ( ( (  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  (
x  .<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x )
) )  /\  (
x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
7155, 70ceqsexv 3150 . . 3  |-  ( E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) )  <->  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) )
7253, 71anbi12i 697 . 2  |-  ( ( ( K  e.  Poset  /\  ( B  e.  dom  U  /\  B  e.  dom  G ) )  /\  E. n ( n  = 
._|_  /\  A. x  e.  B  A. y  e.  B  ( ( ( n `  x )  e.  B  /\  (
n `  ( n `  x ) )  =  x  /\  ( x 
.<_  y  ->  ( n `
 y )  .<_  ( n `  x
) ) )  /\  ( x  .\/  ( n `
 x ) )  =  .1.  /\  (
x  ./\  ( n `  x ) )  =  .0.  ) ) )  <-> 
( ( K  e. 
Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  ( (
(  ._|_  `  x )  e.  B  /\  (  ._|_  `  (  ._|_  `  x
) )  =  x  /\  ( x  .<_  y  ->  (  ._|_  `  y
)  .<_  (  ._|_  `  x
) ) )  /\  ( x  .\/  (  ._|_  `  x ) )  =  .1.  /\  ( x 
./\  (  ._|_  `  x
) )  =  .0.  ) ) )
7350, 51, 723bitr2i 273 1  |-  ( K  e.  OP  <->  ( ( K  e.  Poset  /\  B  e.  dom  U  /\  B  e.  dom  G )  /\  A. x  e.  B  A. y  e.  B  (
( (  ._|_  `  x
)  e.  B  /\  (  ._|_  `  (  ._|_  `  x ) )  =  x  /\  ( x 
.<_  y  ->  (  ._|_  `  y )  .<_  (  ._|_  `  x ) ) )  /\  ( x  .\/  (  ._|_  `  x )
)  =  .1.  /\  ( x  ./\  (  ._|_  `  x ) )  =  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   A.wral 2814   _Vcvv 3113   class class class wbr 4447   dom cdm 4999   ` cfv 5588  (class class class)co 6284   Basecbs 14490   lecple 14562   occoc 14563   Posetcpo 15427   lubclub 15429   glbcglb 15430   joincjn 15431   meetcmee 15432   0.cp0 15524   1.cp1 15525   OPcops 33987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-dm 5009  df-iota 5551  df-fv 5596  df-ov 6287  df-oposet 33991
This theorem is referenced by:  opposet  33996  oposlem  33997  op01dm  33998
  Copyright terms: Public domain W3C validator