MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isomin Structured version   Unicode version

Theorem isomin 6221
Description: Isomorphisms preserve minimal elements. Note that  ( `' R " { D } ) is Takeuti and Zaring's idiom for the initial segment  { x  |  x R D }. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
Assertion
Ref Expression
isomin  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )

Proof of Theorem isomin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3795 . . . 4  |-  ( -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) 
<->  E. y  y  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) ) )
2 ssel 3498 . . . . . . . . . . . . . 14  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
3 isof1o 6209 . . . . . . . . . . . . . . 15  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
4 f1ofn 5817 . . . . . . . . . . . . . . 15  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
5 fnbrfvb 5908 . . . . . . . . . . . . . . . 16  |-  ( ( H  Fn  A  /\  x  e.  A )  ->  ( ( H `  x )  =  y  <-> 
x H y ) )
65ex 434 . . . . . . . . . . . . . . 15  |-  ( H  Fn  A  ->  (
x  e.  A  -> 
( ( H `  x )  =  y  <-> 
x H y ) ) )
73, 4, 63syl 20 . . . . . . . . . . . . . 14  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( ( H `  x )  =  y  <->  x H y ) ) )
82, 7syl9r 72 . . . . . . . . . . . . 13  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( ( H `  x )  =  y  <->  x H y ) ) ) )
98imp31 432 . . . . . . . . . . . 12  |-  ( ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  C )  ->  (
( H `  x
)  =  y  <->  x H
y ) )
109rexbidva 2970 . . . . . . . . . . 11  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  ( E. x  e.  C  ( H `  x )  =  y  <->  E. x  e.  C  x H
y ) )
11 vex 3116 . . . . . . . . . . . 12  |-  y  e. 
_V
1211elima 5342 . . . . . . . . . . 11  |-  ( y  e.  ( H " C )  <->  E. x  e.  C  x H
y )
1310, 12syl6rbbr 264 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( H
" C )  <->  E. x  e.  C  ( H `  x )  =  y ) )
14 fvex 5876 . . . . . . . . . . 11  |-  ( H `
 D )  e. 
_V
1511eliniseg 5366 . . . . . . . . . . 11  |-  ( ( H `  D )  e.  _V  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
1614, 15mp1i 12 . . . . . . . . . 10  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( `' S " { ( H `  D ) } )  <->  y S
( H `  D
) ) )
1713, 16anbi12d 710 . . . . . . . . 9  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
( y  e.  ( H " C )  /\  y  e.  ( `' S " { ( H `  D ) } ) )  <->  ( E. x  e.  C  ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
18 elin 3687 . . . . . . . . 9  |-  ( y  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  ( y  e.  ( H " C
)  /\  y  e.  ( `' S " { ( H `  D ) } ) ) )
19 r19.41v 3014 . . . . . . . . 9  |-  ( E. x  e.  C  ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  <->  ( E. x  e.  C  ( H `  x )  =  y  /\  y S ( H `  D ) ) )
2017, 18, 193bitr4g 288 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  (
y  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  E. x  e.  C  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
2120adantrr 716 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  <->  E. x  e.  C  ( ( H `  x )  =  y  /\  y S ( H `  D ) ) ) )
22 breq1 4450 . . . . . . . . . . . . . 14  |-  ( ( H `  x )  =  y  ->  (
( H `  x
) S ( H `
 D )  <->  y S
( H `  D
) ) )
2322biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  -> 
( H `  x
) S ( H `
 D ) )
24 vex 3116 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
2524eliniseg 5366 . . . . . . . . . . . . . . 15  |-  ( D  e.  A  ->  (
x  e.  ( `' R " { D } )  <->  x R D ) )
2625ad2antll 728 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  <->  x R D ) )
27 isorel 6210 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  <->  ( H `  x ) S ( H `  D ) ) )
2826, 27bitrd 253 . . . . . . . . . . . . 13  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  <->  ( H `  x ) S ( H `  D ) ) )
2923, 28syl5ibr 221 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( (
( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) )
3029exp32 605 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( D  e.  A  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) )
312, 30syl9r 72 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( D  e.  A  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) ) )
3231com34 83 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( D  e.  A  ->  ( x  e.  C  ->  ( ( ( H `  x
)  =  y  /\  y S ( H `  D ) )  ->  x  e.  ( `' R " { D }
) ) ) ) ) )
3332imp32 433 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( ( ( H `
 x )  =  y  /\  y S ( H `  D
) )  ->  x  e.  ( `' R " { D } ) ) ) )
3433reximdvai 2935 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. x  e.  C  ( ( H `
 x )  =  y  /\  y S ( H `  D
) )  ->  E. x  e.  C  x  e.  ( `' R " { D } ) ) )
3521, 34sylbid 215 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  ->  E. x  e.  C  x  e.  ( `' R " { D } ) ) )
36 elin 3687 . . . . . . . 8  |-  ( x  e.  ( C  i^i  ( `' R " { D } ) )  <->  ( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
3736exbii 1644 . . . . . . 7  |-  ( E. x  x  e.  ( C  i^i  ( `' R " { D } ) )  <->  E. x
( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
38 neq0 3795 . . . . . . 7  |-  ( -.  ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  E. x  x  e.  ( C  i^i  ( `' R " { D } ) ) )
39 df-rex 2820 . . . . . . 7  |-  ( E. x  e.  C  x  e.  ( `' R " { D } )  <->  E. x ( x  e.  C  /\  x  e.  ( `' R " { D } ) ) )
4037, 38, 393bitr4i 277 . . . . . 6  |-  ( -.  ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  E. x  e.  C  x  e.  ( `' R " { D }
) )
4135, 40syl6ibr 227 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( y  e.  ( ( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
4241exlimdv 1700 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. y  y  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
431, 42syl5bi 217 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/)  ->  -.  ( C  i^i  ( `' R " { D } ) )  =  (/) ) )
4443con4d 105 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/)  ->  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
453, 4syl 16 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Fn  A
)
46 fnfvima 6138 . . . . . . . . . . 11  |-  ( ( H  Fn  A  /\  C  C_  A  /\  x  e.  C )  ->  ( H `  x )  e.  ( H " C
) )
47463expia 1198 . . . . . . . . . 10  |-  ( ( H  Fn  A  /\  C  C_  A )  -> 
( x  e.  C  ->  ( H `  x
)  e.  ( H
" C ) ) )
4847adantrr 716 . . . . . . . . 9  |-  ( ( H  Fn  A  /\  ( C  C_  A  /\  D  e.  A )
)  ->  ( x  e.  C  ->  ( H `
 x )  e.  ( H " C
) ) )
4945, 48sylan 471 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( H `  x
)  e.  ( H
" C ) ) )
5049adantrd 468 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( H `  x )  e.  ( H " C ) ) )
5127biimpd 207 . . . . . . . . . . . . . 14  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  ->  ( H `
 x ) S ( H `  D
) ) )
52 fvex 5876 . . . . . . . . . . . . . . . 16  |-  ( H `
 x )  e. 
_V
5352eliniseg 5366 . . . . . . . . . . . . . . 15  |-  ( ( H `  D )  e.  _V  ->  (
( H `  x
)  e.  ( `' S " { ( H `  D ) } )  <->  ( H `  x ) S ( H `  D ) ) )
5414, 53ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( H `  x )  e.  ( `' S " { ( H `  D ) } )  <-> 
( H `  x
) S ( H `
 D ) )
5551, 54syl6ibr 227 . . . . . . . . . . . . 13  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x R D  ->  ( H `
 x )  e.  ( `' S " { ( H `  D ) } ) ) )
5626, 55sylbid 215 . . . . . . . . . . . 12  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  (
x  e.  A  /\  D  e.  A )
)  ->  ( x  e.  ( `' R " { D } )  -> 
( H `  x
)  e.  ( `' S " { ( H `  D ) } ) ) )
5756exp32 605 . . . . . . . . . . 11  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( x  e.  A  ->  ( D  e.  A  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) )
582, 57syl9r 72 . . . . . . . . . 10  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( x  e.  C  ->  ( D  e.  A  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) ) )
5958com34 83 . . . . . . . . 9  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( C  C_  A  ->  ( D  e.  A  ->  ( x  e.  C  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) ) ) )
6059imp32 433 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  C  ->  ( x  e.  ( `' R " { D } )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) )
6160impd 431 . . . . . . 7  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) )
6250, 61jcad 533 . . . . . 6  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( x  e.  C  /\  x  e.  ( `' R " { D } ) )  ->  ( ( H `
 x )  e.  ( H " C
)  /\  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) ) )
63 elin 3687 . . . . . 6  |-  ( ( H `  x )  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  <->  ( ( H `
 x )  e.  ( H " C
)  /\  ( H `  x )  e.  ( `' S " { ( H `  D ) } ) ) )
6462, 36, 633imtr4g 270 . . . . 5  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  ( C  i^i  ( `' R " { D } ) )  -> 
( H `  x
)  e.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) ) ) )
65 n0i 3790 . . . . 5  |-  ( ( H `  x )  e.  ( ( H
" C )  i^i  ( `' S " { ( H `  D ) } ) )  ->  -.  (
( H " C
)  i^i  ( `' S " { ( H `
 D ) } ) )  =  (/) )
6664, 65syl6 33 . . . 4  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( x  e.  ( C  i^i  ( `' R " { D } ) )  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6766exlimdv 1700 . . 3  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( E. x  x  e.  ( C  i^i  ( `' R " { D } ) )  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6838, 67syl5bi 217 . 2  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( -.  ( C  i^i  ( `' R " { D } ) )  =  (/)  ->  -.  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
6944, 68impcon4bid 205 1  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  ( C  C_  A  /\  D  e.  A ) )  -> 
( ( C  i^i  ( `' R " { D } ) )  =  (/) 
<->  ( ( H " C )  i^i  ( `' S " { ( H `  D ) } ) )  =  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002    Fn wfn 5583   -1-1-onto->wf1o 5587   ` cfv 5588    Isom wiso 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-f1o 5595  df-fv 5596  df-isom 5597
This theorem is referenced by:  isofrlem  6224
  Copyright terms: Public domain W3C validator