MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr Unicode version

Theorem isofr 6021
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
<->  S  Fr  B ) )

Proof of Theorem isofr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isocnv 6009 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 id 20 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
3 isof1o 6004 . . . . 5  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' H : B -1-1-onto-> A )
4 f1ofun 5635 . . . . 5  |-  ( `' H : B -1-1-onto-> A  ->  Fun  `' H )
5 vex 2919 . . . . . 6  |-  x  e. 
_V
65funimaex 5490 . . . . 5  |-  ( Fun  `' H  ->  ( `' H " x )  e.  _V )
73, 4, 63syl 19 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( `' H " x )  e.  _V )
82, 7isofrlem 6019 . . 3  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( R  Fr  A  ->  S  Fr  B ) )
91, 8syl 16 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A  ->  S  Fr  B
) )
10 id 20 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  R ,  S  ( A ,  B ) )
11 isof1o 6004 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
12 f1ofun 5635 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Fun  H )
135funimaex 5490 . . . 4  |-  ( Fun 
H  ->  ( H " x )  e.  _V )
1411, 12, 133syl 19 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( H "
x )  e.  _V )
1510, 14isofrlem 6019 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Fr  B  ->  R  Fr  A
) )
169, 15impbid 184 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Fr  A 
<->  S  Fr  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1721   _Vcvv 2916    Fr wfr 4498   `'ccnv 4836   "cima 4840   Fun wfun 5407   -1-1-onto->wf1o 5412    Isom wiso 5414
This theorem is referenced by:  isowe  6028  wofib  7470  isfin1-4  8223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-fr 4501  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422
  Copyright terms: Public domain W3C validator