Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq4 Structured version   Visualization version   Unicode version

Theorem isoeq4 6231
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq4

Proof of Theorem isoeq4
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5819 . . 3
2 raleq 2973 . . . 4
32raleqbi1dv 2981 . . 3
41, 3anbi12d 725 . 2
5 df-isom 5598 . 2
6 df-isom 5598 . 2
74, 5, 63bitr4g 296 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   wceq 1452  wral 2756   class class class wbr 4395  wf1o 5588  cfv 5589   wiso 5590 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-isom 5598 This theorem is referenced by:  oieu  8072  oiid  8074  finnisoeu  8562  iunfictbso  8563  fz1isolem  12665  isercolllem3  13807  summolem2a  13858  prodmolem2a  14065  erdszelem1  29986  erdsze  29997  erdsze2lem1  29998  erdsze2lem2  29999  fzisoeu  37606  fourierdlem36  38118  fourierdlem112  38194  fourierdlem113  38195
 Copyright terms: Public domain W3C validator