MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoco Unicode version

Theorem isoco 13953
Description: The composition of two isomorphisms is an isomorphism. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isoco.b  |-  B  =  ( Base `  C
)
isoco.o  |-  .x.  =  (comp `  C )
isoco.n  |-  I  =  (  Iso  `  C
)
isoco.c  |-  ( ph  ->  C  e.  Cat )
isoco.x  |-  ( ph  ->  X  e.  B )
isoco.y  |-  ( ph  ->  Y  e.  B )
isoco.z  |-  ( ph  ->  Z  e.  B )
isoco.f  |-  ( ph  ->  F  e.  ( X I Y ) )
isoco.g  |-  ( ph  ->  G  e.  ( Y I Z ) )
Assertion
Ref Expression
isoco  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X I Z ) )

Proof of Theorem isoco
StepHypRef Expression
1 isoco.b . 2  |-  B  =  ( Base `  C
)
2 eqid 2404 . 2  |-  (Inv `  C )  =  (Inv
`  C )
3 isoco.c . 2  |-  ( ph  ->  C  e.  Cat )
4 isoco.x . 2  |-  ( ph  ->  X  e.  B )
5 isoco.z . 2  |-  ( ph  ->  Z  e.  B )
6 isoco.n . 2  |-  I  =  (  Iso  `  C
)
7 isoco.y . . 3  |-  ( ph  ->  Y  e.  B )
8 isoco.f . . 3  |-  ( ph  ->  F  e.  ( X I Y ) )
9 isoco.o . . 3  |-  .x.  =  (comp `  C )
10 isoco.g . . 3  |-  ( ph  ->  G  e.  ( Y I Z ) )
111, 2, 3, 4, 7, 6, 8, 9, 5, 10invco 13951 . 2  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F ) ( X (Inv `  C ) Z ) ( ( ( X (Inv `  C ) Y ) `  F
) ( <. Z ,  Y >.  .x.  X )
( ( Y (Inv
`  C ) Z ) `  G ) ) )
121, 2, 3, 4, 5, 6, 11inviso1 13946 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X I Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   <.cop 3777   ` cfv 5413  (class class class)co 6040   Basecbs 13424  compcco 13496   Catccat 13844  Invcinv 13926    Iso ciso 13927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-cat 13848  df-cid 13849  df-sect 13928  df-inv 13929  df-iso 13930
  Copyright terms: Public domain W3C validator