MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv3 Structured version   Visualization version   Unicode version

Theorem isocnv3 6223
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
isocnv3.1  |-  C  =  ( ( A  X.  A )  \  R
)
isocnv3.2  |-  D  =  ( ( B  X.  B )  \  S
)
Assertion
Ref Expression
isocnv3  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  C ,  D  ( A ,  B ) )

Proof of Theorem isocnv3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 4865 . . . . . . . 8  |-  ( x ( A  X.  A
) y  <->  ( x  e.  A  /\  y  e.  A ) )
2 isocnv3.1 . . . . . . . . . . 11  |-  C  =  ( ( A  X.  A )  \  R
)
32breqi 4408 . . . . . . . . . 10  |-  ( x C y  <->  x (
( A  X.  A
)  \  R )
y )
4 brdif 4453 . . . . . . . . . 10  |-  ( x ( ( A  X.  A )  \  R
) y  <->  ( x
( A  X.  A
) y  /\  -.  x R y ) )
53, 4bitri 253 . . . . . . . . 9  |-  ( x C y  <->  ( x
( A  X.  A
) y  /\  -.  x R y ) )
65baib 914 . . . . . . . 8  |-  ( x ( A  X.  A
) y  ->  (
x C y  <->  -.  x R y ) )
71, 6sylbir 217 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x C y  <->  -.  x R y ) )
87adantl 468 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x C y  <->  -.  x R y ) )
9 f1of 5814 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
10 ffvelrn 6020 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
11 ffvelrn 6020 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
1210, 11anim12dan 848 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
)  e.  B  /\  ( H `  y )  e.  B ) )
13 brxp 4865 . . . . . . . . 9  |-  ( ( H `  x ) ( B  X.  B
) ( H `  y )  <->  ( ( H `  x )  e.  B  /\  ( H `  y )  e.  B ) )
1412, 13sylibr 216 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )
( B  X.  B
) ( H `  y ) )
159, 14sylan 474 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )
( B  X.  B
) ( H `  y ) )
16 isocnv3.2 . . . . . . . . . 10  |-  D  =  ( ( B  X.  B )  \  S
)
1716breqi 4408 . . . . . . . . 9  |-  ( ( H `  x ) D ( H `  y )  <->  ( H `  x ) ( ( B  X.  B ) 
\  S ) ( H `  y ) )
18 brdif 4453 . . . . . . . . 9  |-  ( ( H `  x ) ( ( B  X.  B )  \  S
) ( H `  y )  <->  ( ( H `  x )
( B  X.  B
) ( H `  y )  /\  -.  ( H `  x ) S ( H `  y ) ) )
1917, 18bitri 253 . . . . . . . 8  |-  ( ( H `  x ) D ( H `  y )  <->  ( ( H `  x )
( B  X.  B
) ( H `  y )  /\  -.  ( H `  x ) S ( H `  y ) ) )
2019baib 914 . . . . . . 7  |-  ( ( H `  x ) ( B  X.  B
) ( H `  y )  ->  (
( H `  x
) D ( H `
 y )  <->  -.  ( H `  x ) S ( H `  y ) ) )
2115, 20syl 17 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) D ( H `
 y )  <->  -.  ( H `  x ) S ( H `  y ) ) )
228, 21bibi12d 323 . . . . 5  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x C y  <-> 
( H `  x
) D ( H `
 y ) )  <-> 
( -.  x R y  <->  -.  ( H `  x ) S ( H `  y ) ) ) )
23 notbi 297 . . . . 5  |-  ( ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  ( -.  x R y  <->  -.  ( H `  x ) S ( H `  y ) ) )
2422, 23syl6rbbr 268 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
25242ralbidva 2830 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
2625pm5.32i 643 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x C y  <->  ( H `  x ) D ( H `  y ) ) ) )
27 df-isom 5591 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
28 df-isom 5591 . 2  |-  ( H 
Isom  C ,  D  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x C y  <-> 
( H `  x
) D ( H `
 y ) ) ) )
2926, 27, 283bitr4i 281 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  C ,  D  ( A ,  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737    \ cdif 3401   class class class wbr 4402    X. cxp 4832   -->wf 5578   -1-1-onto->wf1o 5581   ` cfv 5582    Isom wiso 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-f1o 5589  df-fv 5590  df-isom 5591
This theorem is referenced by:  leiso  12622  gtiso  28281
  Copyright terms: Public domain W3C validator