MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv Structured version   Unicode version

Theorem isocnv 6120
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )

Proof of Theorem isocnv
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5751 . . . 4  |-  ( H : A -1-1-onto-> B  ->  `' H : B -1-1-onto-> A )
21adantr 465 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  `' H : B -1-1-onto-> A )
3 f1ocnvfv2 6083 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  z  e.  B )  ->  ( H `  ( `' H `  z ) )  =  z )
43adantrr 716 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  z )
)  =  z )
5 f1ocnvfv2 6083 . . . . . . . 8  |-  ( ( H : A -1-1-onto-> B  /\  w  e.  B )  ->  ( H `  ( `' H `  w ) )  =  w )
65adantrl 715 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  ( H `  ( `' H `  w )
)  =  w )
74, 6breq12d 4403 . . . . . 6  |-  ( ( H : A -1-1-onto-> B  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
87adantlr 714 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  z S w ) )
9 f1of 5739 . . . . . . 7  |-  ( `' H : B -1-1-onto-> A  ->  `' H : B --> A )
101, 9syl 16 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  `' H : B --> A )
11 ffvelrn 5940 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  z  e.  B )  ->  ( `' H `  z )  e.  A
)
12 ffvelrn 5940 . . . . . . . . 9  |-  ( ( `' H : B --> A  /\  w  e.  B )  ->  ( `' H `  w )  e.  A
)
1311, 12anim12dan 833 . . . . . . . 8  |-  ( ( `' H : B --> A  /\  ( z  e.  B  /\  w  e.  B
) )  ->  (
( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
) )
14 breq1 4393 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
x R y  <->  ( `' H `  z ) R y ) )
15 fveq2 5789 . . . . . . . . . . . 12  |-  ( x  =  ( `' H `  z )  ->  ( H `  x )  =  ( H `  ( `' H `  z ) ) )
1615breq1d 4400 . . . . . . . . . . 11  |-  ( x  =  ( `' H `  z )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  y
) ) )
1714, 16bibi12d 321 . . . . . . . . . 10  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) ) ) )
18 bicom 200 . . . . . . . . . 10  |-  ( ( ( `' H `  z ) R y  <-> 
( H `  ( `' H `  z ) ) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) )
1917, 18syl6bb 261 . . . . . . . . 9  |-  ( x  =  ( `' H `  z )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y ) ) )
20 fveq2 5789 . . . . . . . . . . 11  |-  ( y  =  ( `' H `  w )  ->  ( H `  y )  =  ( H `  ( `' H `  w ) ) )
2120breq2d 4402 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( H `  ( `' H `  z ) ) S ( H `  ( `' H `  w ) ) ) )
22 breq2 4394 . . . . . . . . . 10  |-  ( y  =  ( `' H `  w )  ->  (
( `' H `  z ) R y  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2321, 22bibi12d 321 . . . . . . . . 9  |-  ( y  =  ( `' H `  w )  ->  (
( ( H `  ( `' H `  z ) ) S ( H `
 y )  <->  ( `' H `  z ) R y )  <->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
2419, 23rspc2va 3177 . . . . . . . 8  |-  ( ( ( ( `' H `  z )  e.  A  /\  ( `' H `  w )  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2513, 24sylan 471 . . . . . . 7  |-  ( ( ( `' H : B
--> A  /\  ( z  e.  B  /\  w  e.  B ) )  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  (
( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2625an32s 802 . . . . . 6  |-  ( ( ( `' H : B
--> A  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) ) )  /\  (
z  e.  B  /\  w  e.  B )
)  ->  ( ( H `  ( `' H `  z )
) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
2710, 26sylanl1 650 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( ( H `  ( `' H `  z ) ) S ( H `
 ( `' H `  w ) )  <->  ( `' H `  z ) R ( `' H `  w ) ) )
288, 27bitr3d 255 . . . 4  |-  ( ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z S w  <-> 
( `' H `  z ) R ( `' H `  w ) ) )
2928ralrimivva 2904 . . 3  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) )
302, 29jca 532 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  ->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  (
z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
31 df-isom 5525 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
32 df-isom 5525 . 2  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  ( `' H : B -1-1-onto-> A  /\  A. z  e.  B  A. w  e.  B  ( z S w  <->  ( `' H `  z ) R ( `' H `  w ) ) ) )
3330, 31, 323imtr4i 266 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   class class class wbr 4390   `'ccnv 4937   -->wf 5512   -1-1-onto->wf1o 5515   ` cfv 5516    Isom wiso 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525
This theorem is referenced by:  isores1  6124  isofr  6132  isose  6133  isopo  6136  isoso  6138  weisoeq  6145  weisoeq2  6146  fnwelem  6787  oieu  7854  oemapwe  8003  cantnffval2  8004  oemapweOLD  8025  cantnffval2OLD  8026  wemapwe  8029  wemapweOLD  8030  infxpenlem  8281  fpwwe2lem7  8904  fpwwe2lem9  8906  infmsup  10409  ltweuz  11885  fz1isolem  12316  ordthmeo  19491  relogiso  22162  erdsze2lem2  27226
  Copyright terms: Public domain W3C validator