MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnzr2 Structured version   Visualization version   Unicode version

Theorem isnzr2 18487
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
isnzr2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )

Proof of Theorem isnzr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2451 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
2 eqid 2451 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
31, 2isnzr 18483 . 2  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  ( 0g
`  R ) ) )
4 isnzr2.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
54, 1ringidcl 17801 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
65adantr 467 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  e.  B )
74, 2ring0cl 17802 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  B )
87adantr 467 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 0g `  R )  e.  B )
9 simpr 463 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  ( 1r `  R )  =/=  ( 0g `  R
) )
10 df-ne 2624 . . . . . . . . . 10  |-  ( x  =/=  y  <->  -.  x  =  y )
11 neeq1 2686 . . . . . . . . . 10  |-  ( x  =  ( 1r `  R )  ->  (
x  =/=  y  <->  ( 1r `  R )  =/=  y
) )
1210, 11syl5bbr 263 . . . . . . . . 9  |-  ( x  =  ( 1r `  R )  ->  ( -.  x  =  y  <->  ( 1r `  R )  =/=  y ) )
13 neeq2 2687 . . . . . . . . 9  |-  ( y  =  ( 0g `  R )  ->  (
( 1r `  R
)  =/=  y  <->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
1412, 13rspc2ev 3161 . . . . . . . 8  |-  ( ( ( 1r `  R
)  e.  B  /\  ( 0g `  R )  e.  B  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
156, 8, 9, 14syl3anc 1268 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y )
1615ex 436 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  ->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
174, 1, 2ring1eq0 17820 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
( 1r `  R
)  =  ( 0g
`  R )  ->  x  =  y )
)
18173expb 1209 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( 1r `  R )  =  ( 0g `  R
)  ->  x  =  y ) )
1918necon3bd 2638 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2019rexlimdvva 2886 . . . . . 6  |-  ( R  e.  Ring  ->  ( E. x  e.  B  E. y  e.  B  -.  x  =  y  ->  ( 1r `  R )  =/=  ( 0g `  R ) ) )
2116, 20impbid 194 . . . . 5  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
22 fvex 5875 . . . . . . 7  |-  ( Base `  R )  e.  _V
234, 22eqeltri 2525 . . . . . 6  |-  B  e. 
_V
24 1sdom 7775 . . . . . 6  |-  ( B  e.  _V  ->  ( 1o  ~<  B  <->  E. x  e.  B  E. y  e.  B  -.  x  =  y ) )
2523, 24ax-mp 5 . . . . 5  |-  ( 1o 
~<  B  <->  E. x  e.  B  E. y  e.  B  -.  x  =  y
)
2621, 25syl6bbr 267 . . . 4  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  1o  ~<  B ) )
27 1onn 7340 . . . . . 6  |-  1o  e.  om
28 sucdom 7769 . . . . . 6  |-  ( 1o  e.  om  ->  ( 1o  ~<  B  <->  suc  1o  ~<_  B ) )
2927, 28ax-mp 5 . . . . 5  |-  ( 1o 
~<  B  <->  suc  1o  ~<_  B )
30 df-2o 7183 . . . . . 6  |-  2o  =  suc  1o
3130breq1i 4409 . . . . 5  |-  ( 2o  ~<_  B  <->  suc  1o  ~<_  B )
3229, 31bitr4i 256 . . . 4  |-  ( 1o 
~<  B  <->  2o  ~<_  B )
3326, 32syl6bb 265 . . 3  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  ( 0g `  R )  <->  2o  ~<_  B ) )
3433pm5.32i 643 . 2  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  =/=  ( 0g `  R
) )  <->  ( R  e.  Ring  /\  2o  ~<_  B ) )
353, 34bitri 253 1  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  2o  ~<_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   E.wrex 2738   _Vcvv 3045   class class class wbr 4402   suc csuc 5425   ` cfv 5582   omcom 6692   1oc1o 7175   2oc2o 7176    ~<_ cdom 7567    ~< csdm 7568   Basecbs 15121   0gc0g 15338   1rcur 17735   Ringcrg 17780  NzRingcnzr 18481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-er 7363  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-plusg 15203  df-0g 15340  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-minusg 16674  df-mgp 17724  df-ur 17736  df-ring 17782  df-nzr 18482
This theorem is referenced by:  opprnzr  18489  znfld  19131  znidomb  19132
  Copyright terms: Public domain W3C validator