MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Unicode version

Theorem isnvi 24123
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5  |-  X  =  ran  G
isnvi.6  |-  Z  =  (GId `  G )
isnvi.7  |-  <. G ,  S >.  e.  CVecOLD
isnvi.8  |-  N : X
--> RR
isnvi.9  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
isnvi.10  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
isnvi.11  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
isnvi.12  |-  U  = 
<. <. G ,  S >. ,  N >.
Assertion
Ref Expression
isnvi  |-  U  e.  NrmCVec
Distinct variable groups:    x, y, G    x, N, y    x, S, y    x, X, y
Allowed substitution hints:    U( x, y)    Z( x, y)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2  |-  U  = 
<. <. G ,  S >. ,  N >.
2 isnvi.7 . . 3  |-  <. G ,  S >.  e.  CVecOLD
3 isnvi.8 . . 3  |-  N : X
--> RR
4 isnvi.9 . . . . . 6  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
54ex 434 . . . . 5  |-  ( x  e.  X  ->  (
( N `  x
)  =  0  ->  x  =  Z )
)
6 isnvi.10 . . . . . . 7  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
76ancoms 453 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
87ralrimiva 2820 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) ) )
9 isnvi.11 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
109ralrimiva 2820 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
115, 8, 103jca 1168 . . . 4  |-  ( x  e.  X  ->  (
( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )
1211rgen 2886 . . 3  |-  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
13 isnvi.5 . . . 4  |-  X  =  ran  G
14 isnvi.6 . . . 4  |-  Z  =  (GId `  G )
1513, 14isnv 24122 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
162, 3, 12, 15mpbir3an 1170 . 2  |-  <. <. G ,  S >. ,  N >.  e.  NrmCVec
171, 16eqeltri 2533 1  |-  U  e.  NrmCVec
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2793   <.cop 3978   class class class wbr 4387   ran crn 4936   -->wf 5509   ` cfv 5513  (class class class)co 6187   CCcc 9378   RRcr 9379   0cc0 9380    + caddc 9383    x. cmul 9385    <_ cle 9517   abscabs 12822  GIdcgi 23806   CVecOLDcvc 24055   NrmCVeccnv 24094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-ov 6190  df-oprab 6191  df-vc 24056  df-nv 24102
This theorem is referenced by:  cnnv  24199  hhnv  24699  hhssnv  24797
  Copyright terms: Public domain W3C validator