MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Unicode version

Theorem isnvi 25920
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5  |-  X  =  ran  G
isnvi.6  |-  Z  =  (GId `  G )
isnvi.7  |-  <. G ,  S >.  e.  CVecOLD
isnvi.8  |-  N : X
--> RR
isnvi.9  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
isnvi.10  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
isnvi.11  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
isnvi.12  |-  U  = 
<. <. G ,  S >. ,  N >.
Assertion
Ref Expression
isnvi  |-  U  e.  NrmCVec
Distinct variable groups:    x, y, G    x, N, y    x, S, y    x, X, y
Allowed substitution hints:    U( x, y)    Z( x, y)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2  |-  U  = 
<. <. G ,  S >. ,  N >.
2 isnvi.7 . . 3  |-  <. G ,  S >.  e.  CVecOLD
3 isnvi.8 . . 3  |-  N : X
--> RR
4 isnvi.9 . . . . . 6  |-  ( ( x  e.  X  /\  ( N `  x )  =  0 )  ->  x  =  Z )
54ex 432 . . . . 5  |-  ( x  e.  X  ->  (
( N `  x
)  =  0  ->  x  =  Z )
)
6 isnvi.10 . . . . . . 7  |-  ( ( y  e.  CC  /\  x  e.  X )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
76ancoms 451 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  CC )  ->  ( N `  (
y S x ) )  =  ( ( abs `  y )  x.  ( N `  x ) ) )
87ralrimiva 2818 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) ) )
9 isnvi.11 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) ) )
109ralrimiva 2818 . . . . 5  |-  ( x  e.  X  ->  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
115, 8, 103jca 1177 . . . 4  |-  ( x  e.  X  ->  (
( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) )
1211rgen 2764 . . 3  |-  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) )
13 isnvi.5 . . . 4  |-  X  =  ran  G
14 isnvi.6 . . . 4  |-  Z  =  (GId `  G )
1513, 14isnv 25919 . . 3  |-  ( <. <. G ,  S >. ,  N >.  e.  NrmCVec  <->  ( <. G ,  S >.  e.  CVecOLD 
/\  N : X --> RR  /\  A. x  e.  X  ( ( ( N `  x )  =  0  ->  x  =  Z )  /\  A. y  e.  CC  ( N `  ( y S x ) )  =  ( ( abs `  y )  x.  ( N `  x )
)  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
162, 3, 12, 15mpbir3an 1179 . 2  |-  <. <. G ,  S >. ,  N >.  e.  NrmCVec
171, 16eqeltri 2486 1  |-  U  e.  NrmCVec
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754   <.cop 3978   class class class wbr 4395   ran crn 4824   -->wf 5565   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522    + caddc 9525    x. cmul 9527    <_ cle 9659   abscabs 13216  GIdcgi 25603   CVecOLDcvc 25852   NrmCVeccnv 25891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-vc 25853  df-nv 25899
This theorem is referenced by:  cnnv  25996  hhnv  26496  hhssnv  26594
  Copyright terms: Public domain W3C validator